Advertisement

Applied Physics A

, Volume 80, Issue 8, pp 1653–1656 | Cite as

On the formation process of silicon carbide nanophases via hydrogenated thermally induced templated synthesis

  • M.H. Rümmeli
  • E. Borowiak-Palen
  • T. Gemming
  • M. Knupfer
  • K. Biedermann
  • R.J. Kalenczuk
  • T. Pichler
Article

Abstract

A thermally induced templated synthesis for SiC nanotubes and nanofibers is presented using ammonia or N2 with vaporized Si is presented. The bundles of SWCNT act as both the carbon source and as a nanoframe from which SiC structures form. Depending on the duration of the thermally induced templated reaction, various SiC nanostructures are obtained for a fixed temperature, carrier gas, and gas pressure. These structures include SiC nanorods coated in C, SiC nanorods, SiC nanotubes, and SiC nanocrystals.

Keywords

Silicon Ammonia Thin Film Carbide Carbon Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.H. Mo, M.D. Shajahan, Y.S. Lee, Y.B. Hahn, K.S. Nahm: Synth. Met. 140, 309 (2004)CrossRefGoogle Scholar
  2. 2.
    Z. Pan, H.-L. Lai, F.C.K. Au, X. Duan, W. Zhou, W. Shi, N. Wang,C.-S. Lee, N.-B. Wong, S.-T. Lee, S. Xie: Adv. Mater. 12, 1186 (2000)CrossRefGoogle Scholar
  3. 3.
    J.M. Nhut, R. Vieira, L. Pesant, J.-P. Tessonnier, N. Keller, G. Ehet, C. Pham-Huu, M.J. Ledoux: Catalysis Today 79, 11 (2002)CrossRefGoogle Scholar
  4. 4.
    N. Keller, C. Pham-Huu, G. Ehet, V. Keller, M.J. Ledoux: Carbon 41, 2131 (2003)CrossRefGoogle Scholar
  5. 5.
    C. Pham-Huu, N. Keller, G. Ehet, M.J. Ledoux: J. Catal. 200, 400 (2001)CrossRefGoogle Scholar
  6. 6.
    http://www.grc.nasa.gov/WWW/RT2002/5000/5510lienhard.htmlGoogle Scholar
  7. 7.
    Y. Zhang, T. Ichihashi, E. Landree, F. Ihey, S. Iijima: Science 285, 1719 (1999)Google Scholar
  8. 8.
    O. Jost, A.A. Gorbunov, J. Möller, W. Pompe, A. Graff, R. Friedlein, X. Liu, M.S. Golden, J. Fink: Chem. Phys. Lett. 339, 297 (2001)CrossRefGoogle Scholar
  9. 9.
    E. Borowiak-Palen, T. Pichler, G.G. Fuentes, A. Graff, R.J. Kalenczuk, M. Knupfer, J. Fink: Chem. Phys. Lett. 378, 516 (2003)CrossRefGoogle Scholar
  10. 10.
    J. Fink: Adv. Electron. Phys. 75, 121 (1989)Google Scholar
  11. 11.
    M. Hofmann, A. Zyweittz, K. Karch, F. Bechstedt: Phys. Rev. B 50, 13401 (1994)CrossRefGoogle Scholar
  12. 12.
    N. Asaoka, S. Muto, T. Tanabe: Diamond Relat. Mater. 10, 1251 (2001)CrossRefGoogle Scholar
  13. 13.
    W. Han, S. Fan, Q. Li, Y. Hu: Science 277, 1287 (1997)Google Scholar
  14. 14.
    H. Dai, E.W. Wong, Y.Z. Lu, S. Fan, C. Lieber: Nature 375, 769 (1995)CrossRefGoogle Scholar
  15. 15.
    A.E. Kaloyeros, R.B. Rizk, J.B. Woodhouse: Phys. Rev. B 38, 13099 (1988)CrossRefGoogle Scholar
  16. 16.
    H.Y. Wang, Y.Y. Wang, Q. Song, T.M. Wang: Mater. Lett. 35 261 (1998)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • M.H. Rümmeli
    • 1
  • E. Borowiak-Palen
    • 1
    • 2
  • T. Gemming
    • 1
  • M. Knupfer
    • 1
  • K. Biedermann
    • 1
  • R.J. Kalenczuk
    • 2
  • T. Pichler
    • 1
  1. 1.Leibniz Institute for Solid State and Materials Research DresdenDresdenGermany
  2. 2.Instutite of Chemical and Environment EngineeringTechnical University of SzczecinSzczecinPoland

Personalised recommendations