Applied Physics A

, Volume 80, Issue 5, pp 1045–1047 | Cite as

Atomic transport and chemical stability of nitrogen in ultrathin HfSiON gate dielectrics

  • C. Driemeier
  • K.P. Bastos
  • G.V. Soares
  • L. Miotti
  • R.P. Pezzi
  • I.J.R. Baumvol
  • P. Punchaipetch
  • G. Pant
  • B.E. Gnade
  • R.M. Wallace
Article

Abstract

HfSiO and HfSiON films with thicknesses compatible with the requirements for gate dielectrics alternatives to SiO2 in ultra-large scale integration silicon-based CMOSFET devices were deposited on an ultrathin HfSiO15N interfacial layer on Si(001). These structures were submitted to thermal processing routines typical of post-deposition annealing and dopant activation steps in fabrication technology, namely at 450 or 1000 °C, respectively, and in atmospheres of N2 and/or O2. N transport and loss were determined by nuclear reaction analysis, including sub-nanometric depth resolution profiling with narrow nuclear reaction resonances. The chemical states of N were accessed by angle-resolved X-ray photoelectron spectroscopy. After annealing at 450 °C, N is seen to be mobile, whereas the chemical environment of N is not changed at this temperature. Annealing at 1000 °C renders N mobile and its most abundant chemical state in near-surface regions is unstable. Annealing in O2 atmosphere promotes incorporation of O from the gas phase into the films, partly in exchange for N and O atoms and partly by net incorporation of oxygen in the films. The profiles of the newly incorporated O atoms are also determined with sub-nanometric depth resolution by narrow nuclear reaction resonance profiling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.D. Wilk, R.M. Wallace, J.M. Anthony: Appl. Phys. Rev.: J. Appl. Phys. 89, 5243 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    M.-H. Cho, W.W. Moon, S.A. Park, Y.K. Kim, K. Jeong, S.K. Kang, D.-H. Ko, S.J. Doh, J.H. Lee, N.I. Lee: Appl. Phys. Lett. 84, 5243 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Wang, D.C. Shie, T.F. Lei, C.L. Lee: Appl. Phys. Lett. 84, 1531 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    M.S. Akbar, S. Gopalan, H.-J. Cho, K. Onishi, R. Choi, R. Nieh, C.S. Kang, Y.H. Kim, J. Han, S. Krishnan, J.C. Lee: Appl. Phys. Lett. 82, 1757 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    M. Quevedo-Lopez, M. El-Bouanani, M.J. Kim, B.E. Gnade, R.M. Wallace, M.R. Visokay, A. LiFatou, J.J. Chambers, L. Colombo: Appl. Phys. Lett. 82, 4669 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    T. Conard, W. Vandervorst, H. De Witte, S. Van Elshocht: Appl. Surf. Sci. 231232, 581 (2004)Google Scholar
  7. 7.
    T. Yamamoto, T. Miyamoto, A. Karen: Appl. Surf. Sci. 231, 561 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    J.F. Kang, H.Y. Hu, C. Ren, M.-F. Li, D.S.H. Chan, H. Hu, H.F. Lim, W.D. Wang, D. Gui, D.-L. Kwong: Appl. Phys. Lett. 84, 1588 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    R.M.C. de Almeida, I.J.R. Baumvol: Surf. Sci. Rep. 49, 1 (2003)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Pant, P. Punchaipetch, M.J. Kim, R.M. Wallace, B.E. Gnade: Thin Solid Films 425, 68 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    I.J.R. Baumvol: Surf. Sci. Rep. 36, 1 (1999)ADSCrossRefGoogle Scholar
  12. 12.
    J.P. Chang, M.L. Green, V.M. Donnelly, R.L. Opila, J. Eng. Jr., J. Sapjeta, P.J. Silverman, B. Weir, H.C. Lu, T. Gustafsson, E. Garfunkel: J. Appl. Phys. 87, 4449 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • C. Driemeier
    • 1
  • K.P. Bastos
    • 1
  • G.V. Soares
    • 1
  • L. Miotti
    • 1
  • R.P. Pezzi
    • 1
  • I.J.R. Baumvol
    • 2
  • P. Punchaipetch
    • 3
  • G. Pant
    • 3
  • B.E. Gnade
    • 3
  • R.M. Wallace
    • 3
  1. 1.Instituto de Física – UFRGSPorto AlegreBrazil
  2. 2.Centro de Ciências Exatas e Tecnológicas – UCSCaxias do SulBrazil
  3. 3.Department of Electrical EngineeringUniversity of Texas at DallasRichardsonUSA

Personalised recommendations