Applied Physics A

, Volume 81, Issue 1, pp 109–114 | Cite as

Molecular dynamics simulation study of the nano-wear characteristics of alkanethiol self-assembled monolayers



A molecular dynamics (MD) simulation study of the probe-based nano-lithography of an alkanethiol self-assembled monolayer (SAM) on a metal surface was performed. The motivation of this work was to understand the nano-tribological phenomena of the nano-metric scribing process of alkanethiol molecules and gain insight into the interaction between the probe tip and the SAM-coated surface during the scribing process. The simulation results revealed that the organothiol molecules were displaced and dragged by the probe tip during scribing due to the strong interchain interactions. It was also found that the scribed pattern width was largely dependent on the tip–surface interaction induced by the probe shape rather than the tip–surface contact size. Also, the minimum load for tip–substrate contact changed with the number of molecules that interact with the probe tip. Furthermore, from the investigation of the effect of the scribing speed on the surface-damage characteristics of the chain molecules, it was found that relatively high-speed scribing could induce excessive removal of the SAM molecules from the surface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Fujihira, Y. Tani, M. Furugori, U. Akiba, Y. Okabe: Ultramicroscopy 86, 63 (2001)CrossRefGoogle Scholar
  2. 2.
    J. Hartwich, L. Dreeskornfeld, V. Heisig, S. Rahn, O. Wehmeyer, U. Kleineberg, U. Heinzmann: Appl. Phys. A 66, S685 (1998)Google Scholar
  3. 3.
    M.J. Tarlov, D.R.F. Burgess Jr., G. Gillen: J. Am. Chem. Soc. 115, 5305 (1993)CrossRefGoogle Scholar
  4. 4.
    K. Sasaki, Y. Koike, H. Azehara, H. Hokari, M. Fujihira: Appl. Phys. A 66, S1275 (1998)Google Scholar
  5. 5.
    O.M. Magnussen, M.R. Vogt, J. Scherer, R.J. Behm: Appl. Phys. A 66, S447 (1998)Google Scholar
  6. 6.
    X. Xiao, J. Hu, D.H. Charych, M. Salmeron: Langmuir 12, 235 (1996)CrossRefGoogle Scholar
  7. 7.
    J. Hautman, M.L. Klein: J. Chem. Phys. 91, 4994 (1989)ADSCrossRefGoogle Scholar
  8. 8.
    W. Mar, M.L. Klein: Langmuir 10, 188 (1994)CrossRefGoogle Scholar
  9. 9.
    J.J. Gerdy, W.A. Goddard III: J. Am. Chem. Soc. 118, 3233 (1996)CrossRefGoogle Scholar
  10. 10.
    J. Hautman, M.L. Klein: J. Chem. Phys. 93, 7483 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    F. Schmid, C. Stadler, D. Düchs: J. Phys.: Condens. Matter 13, 8653 (2001)ADSGoogle Scholar
  12. 12.
    S. Shin, N. Collazo, S.A. Rice: J. Chem. Phys. 96, 1352 (1992)ADSCrossRefGoogle Scholar
  13. 13.
    J.N. Glosli, G.M. McClelland: Phys. Rev. Lett. 70, 1960 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    K.J. Tupper, R.J. Colton, D.W. Brenner: Langmuir 10, 2041 (1994)CrossRefGoogle Scholar
  15. 15.
    P.T. Mikulski, J.A. Harrison: J. Am. Chem. Soc. 123, 6873 (2001)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, S. Jiang: J. Chem. Phys. 117, 1804 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    M. Chandross, G.S. Grest, M.J. Stevens: Langmuir 18, 8392 (2002)CrossRefGoogle Scholar
  18. 18.
    T. Bonner, A. Baratoff: Surf. Sci. 377–379, 1082 (1997)Google Scholar
  19. 19.
    Y. Leng, S. Jiang: J. Chem. Phys. 113, 8800 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    A. Koike, M. Yoneya: J. Phys. Chem. B 102, 3669 (1998)CrossRefGoogle Scholar
  21. 21.
    J. Belak, I.F. Stowers: in Fundamentals of Friction: Macroscopic and Microscopic Processes, ed. by I.L. Singer, H.M. Pollock (Kluwer Academic, Dordrecht, The Netherlands 1992) p. 511Google Scholar
  22. 22.
    J. Belak: Nanotribology: Modeling Atoms when Surfaces Collide (Energy Technol. Rev.) (Lawrence Livermore National Laboratory, Livermore, CA 1994) p. 13Google Scholar
  23. 23.
    T.H. Fang, C.I. Weng: Nanotechnology 11, 148 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    J.I. Siepmann, I.R. McDonald: in Thin Films: Self-Assembled Monolayers of Thiols, Vol. 24, ed. by A. Ulman (Academic, San Diego, CA 1998) p. 205Google Scholar
  25. 25.
    I.H. Sung, J.C. Yang, D.E. Kim, B.S. Shin: Wear 255, 808 (2003)CrossRefGoogle Scholar
  26. 26.
    I.H. Sung, D.E. Kim: Int. J. KSPE 4, 22 (2003)Google Scholar
  27. 27.
    I.H. Sung, D.E. Kim: Appl. Surf. Sci., in pressGoogle Scholar
  28. 28.
    J.P. Ryckaert, A. Bellemans: J. Chem. Soc. Faraday Discuss. 66, 95 (1978)CrossRefGoogle Scholar
  29. 29.
    M. Rieth: Nano-Engineering in Science and Technology (World Scientific, Singapore 2003)Google Scholar
  30. 30.
    M.P. Allen, D.J. Tildesley: Computer Simulation of Liquids (Clarendon, Oxford 1987)Google Scholar
  31. 31.
    D. Frankel, B. Smit: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. (Academic, New York 2002)Google Scholar
  32. 32.
    P. Fenter, P. Eisenberger, K.S. Liang: Phys. Rev. Lett. 70, 2447 (1993)ADSCrossRefGoogle Scholar
  33. 33., Computer Aided Materials Design Joint Research, Japan Chemical Innovation Institute (2002)Google Scholar
  34. 34., Roger Sayle, Biomolecular Structures Group, Glaxo Wellcome Research & Development, Stevenage, Hertfordshire, UK (1992)Google Scholar
  35. 35.
    J.N. Israelachvili: Intermolecular and Surface Forces (Academic, New York 1985) Chap. 11Google Scholar
  36. 36.
    T. Bonner: Ph.D. dissertation, University of Basel, Switzerland, 1998Google Scholar
  37. 37.
    L. Zhang, W.A. Goddard III, S. Jiang: J. Chem. Phys. 117, 7342 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    D.G. Castner, K. Hinds, D.W. Grainger: Langmuir 12, 5083 (1996)CrossRefGoogle Scholar
  39. 39.
    R.G. Nuzzo, B.R. Zegarski, L.H. Dubois: J. Am. Chem. Soc. 109, 733 (1987)CrossRefGoogle Scholar
  40. 40.
    J.A. Harrison, P.T. Mikulski, S.J. Stuart, A.B. Tutein: ‘Dependence of Frictional Properties of Hydrocarbon Chains on Tip Contact Area’. In: Nanotribology: Critical Assessment and Research Needs, ed. by S.M. Hsu, Z.C. Ying (Kluwer Academic, Norwell, MA 2003)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.School of Mechanical EngineeringYonsei UniversitySeoulSouth Korea

Personalised recommendations