Applied Physics A

, Volume 81, Issue 3, pp 611–615 | Cite as

Formation of tunnel barrier using a pseudo-atomic layer deposition method and its application to spin-dependent tunneling junction

  • S.-H. Han
  • W.-C. Jeong
  • J.-S. Lee
  • B.D. Kim
  • S.-K. Joo


The tunneling barrier is crucial to the overall performance in magnetic tunnel junctions. We have suggested a new formation method for the tunnel barrier, which has utilized pseudo-atomic layer deposition with sputtering. As is well known, all metallic thin films oxidize more or less under atmospheric conditions. Using this phenomenon, an ultra-thin metallic layer was prepared and exposed to the oxygen ambient repeatedly to reach a desired thickness for the tunnel barrier. From transmission electron microscopy, the tunnel barrier has been confirmed to have a clear and smooth interface between magnetic layers and the tunnel barrier. From atomic force microscopy, it has also been confirmed to have a low surface roughness. The fabricated magnetic tunnel junction has been shown to exhibit tunnel resistivities from 60 to 92 kΩ μm2 and a maximum tunneling magnetoresistance ratio of 40%.


Transmission Electron Microscopy Surface Roughness Atomic Force Microscopy Atmospheric Condition Formation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey: Phys. Rev. Lett. 74, 3273 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    J.M. Daughton: J. Appl. Phys. 81, 3758 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    J.S. Moodera, L.R. Kinder, J. Nowak, P. Leclair, R. Meservey: Appl. Phys. Lett. 69, 708 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    J. Wang, P.P. Freitas, E. Snoeck: Appl. Phys. Lett. 79, 4553 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    D.J. Smith, M.R. McCartney, C.L. Platt, A.E. Berkowitz: J. Appl. Phys. 83, 5154 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher: J. Appl. Phys. 85, 5828 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    J.J. Sun, K. Shimazawa, N. Kasahara, K. Sato, S. Saruki, T. Kagami, O. Redon, S. Araki, H. Morita, M. Matsuzaki: Appl. Phys. Lett. 76, 2424 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    D. Song, J. Nowak, M. Covington: J. Appl. Phys. 87, 5197 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    L. Smardz, U. Köler, W. Zinn: J. Appl. Phys. 71, 5199 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    N. Cabrera, N.F. Mott: Rep. Prog. Phys. 12, 163 (1948)ADSCrossRefGoogle Scholar
  11. 11.
    K. Shimazawa, N. Kasahara, J.J. Sun, S. Araki, H. Morita, M. Matsuzaki: J. Appl. Phys. 87, 5194 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    A. Paranjpe, S. Gopinath, T. Omstead, R. Bubber: J. Electrochem. Soc. 148, G465 (2001)Google Scholar
  13. 13.
    K.S. Yoon, J.H. Park, J.Y. Yang, C.O. Kim, J.P. Hong: J. Appl. Phys. 91, 7953 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    H.J. Kim, W.C. Jeong, K.K. Cho, Y.K. Kim, S.K. Joo: Jpn. J. Appl. Phys. 39, 4767 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    J.S. Moodera, L.R. Kinder, J. Nowak, P. LeClair, R. Meservey: Appl. Phys. Lett. 69, 708 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • S.-H. Han
    • 1
  • W.-C. Jeong
    • 1
  • J.-S. Lee
    • 1
  • B.D. Kim
    • 1
  • S.-K. Joo
    • 1
  1. 1.School of Material Science and Engineering, College of EngineeringSeoul National UniversitySeoulSouth Korea

Personalised recommendations