Advertisement

Applied Physics A

, Volume 80, Issue 7, pp 1437–1441 | Cite as

Three-dimensional nanofabrication by electron-beam-induced deposition using 200-keV electrons in scanning transmission electron microscope

  • Z.Q. LiuEmail author
  • K. Mitsuishi
  • K. Furuya
Article

Abstract

Attempts were made to fabricate three-dimensional nanostructures on and out of a substrate by electron-beam-induced deposition in a 200-kV scanning transmission electron microscope. Structures with parallel wires over the substrate surface were difficult to fabricate due to the direct deposition of wires on both top and bottom surfaces of the substrate. Within the penetration depth of the incident electron beam, nanotweezers were fabricated by moving the electron beam beyond different substrate layers. Combining the deposition of self-supporting wires and self-standing tips, complicated three-dimensional doll-like, flag-like, and gate-like nanostructures that extend out of the substrate were successfully fabricated with one-step or multi-step scans of the electron beam. Effects of coarsening, nucleation, and distortion during electron-beam-induced deposition are discussed.

Keywords

Electron Microscope Thin Film Transmission Electron Microscope Electron Beam Operating Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Liu, P. Avouris, J. Bucchignano, R. Martel, S. Sun, J. Michl: Appl. Phys. Lett. 80, 865 (2002)CrossRefGoogle Scholar
  2. 2.
    A.J. Storm, J.H. Chen, X.S. Ling, H.W. Zandbergen, C. Dekker: Nat. Mater. 2, 537 (2003)CrossRefGoogle Scholar
  3. 3.
    M. Castagné, M. Benfedda, S. Lahimer, P. Falgayrettes, J.P. Fillard: Ultramicroscopy 76, 187 (1999)CrossRefGoogle Scholar
  4. 4.
    K.I. Schiffmann: Nanotechnology 4, 163 (1993)CrossRefGoogle Scholar
  5. 5.
    F. Zenhausern, M. Adrian, B. ten Heggeler-Bordier, F. Ardizzoni, P. Descouts: J. Appl. Phys. 73, 7232 (1993)Google Scholar
  6. 6.
    L. Dong, F. Arai, T. Fukuda: Appl. Phys. Lett. 81, 1919 (2002)CrossRefGoogle Scholar
  7. 7.
    M. Weber, M. Rudolph, J. Kretz, H.W.P. Koops: J. Vac. Sci. Technol. B 13, 461 (1995)Google Scholar
  8. 8.
    H.W.P. Koops, C. Schössler, A. Kaya, M. Weber: J. Vac. Sci. Technol. B 14, 4105 (1996)Google Scholar
  9. 9.
    F. Floreani, H.W. Koops, W. Elsässer: Nucl. Instrum. Methods B 483, 488 (2002)CrossRefGoogle Scholar
  10. 10.
    C. Schoessler, H.W.P. Koops: J. Vac. Sci. Technol. B 16, 862 (1998)Google Scholar
  11. 11.
    H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber: J. Vac. Sci. Technol. B 11, 2386 (1993)Google Scholar
  12. 12.
    N. Miura, H. Ishii, J. Shirakashi, A. Yamada, M. Konagai: Appl. Surf. Sci. 113114, 269 (1997)Google Scholar
  13. 13.
    M. Komuro, H. Hiroshima: Microelectron. Eng. 35, 273 (1997)Google Scholar
  14. 14.
    H.W.P. Koops, E. Dobisz, J. Urban: J. Vac. Sci. Technol. B 15, 1369 (1997)Google Scholar
  15. 15.
    Y.M. Lau, P.C. Chee, J.T.L. Thong, V. Ng: J. Vac. Sci. Technol. A 20, 1295 (2002)Google Scholar
  16. 16.
    S. Kawata, H.B. Sun, T. Tanaka, K. Takada: Nature 412, 697 (2001)CrossRefGoogle Scholar
  17. 17.
    S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama: J. Vac. Sci. Technol. B 18, 3181 (2000)Google Scholar
  18. 18.
    K. Mitsuishi, M. Shimojo, M. Han, K. Furuya: Appl. Phys. Lett. 83, 2064 (2003)CrossRefGoogle Scholar
  19. 19.
    M. Tanaka, M. Shimojo, K. Mitsuishi, K. Furuya: Appl. Phys. A 78, 543 (2004)CrossRefGoogle Scholar
  20. 20.
    L. Reimer, W. Wächter: Ultramicroscopy 3, 169 (1978)Google Scholar
  21. 21.
    T.E. Allen, R.R. Kunz, T.M. Mayer: J. Vac. Sci. Technol. B 6, 2057 (1988)Google Scholar
  22. 22.
    N. Silvis-Cividjian, C.W. Hagen, P. Kruit, M.A.J. v.d. Stam, H.B. Groen: Appl. Phys. Lett. 82, 3514 (2003)CrossRefGoogle Scholar
  23. 23.
    Z.Q. Liu, K. Mitsuishi, K. Furuya: Nanotechnology 15, 414 (2004)CrossRefGoogle Scholar
  24. 24.
    Z.Q. Liu, K. Mitsuishi, K. Furuya: J. Appl. Phys. 96, 619 (2004)Google Scholar
  25. 25.
    P. Bøggild, T.M. Hansen, C. Tanasa, F. Grey: Nanotechnology 12, 331 (2001)CrossRefGoogle Scholar
  26. 26.
    Z.Q. Liu, K. Mitsuishi, K. Furuya: J. Appl. Phys. 96(7) (2004), in pressGoogle Scholar
  27. 27.
    N.A. Kislov, I.I. Khodos: Microsc. Microanal. Microstruct. 3, 323 (1992)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Nanomaterials LaboratoryNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations