Applied Physics A

, Volume 80, Issue 3, pp 545–549 | Cite as

Energy-resolved analysis of ferroelectric electron emission from TGS using emission electron microscopy

Article

Abstract

Ferroelectric electron emission arises when the spontaneous polarization of a ferroelectric is switched due to the application of an electric field. In order to study the origin of emission and the related emission mechanism, space-resolved emission electron microscopy has been employed. The integral energy distribution of the emitted electrons from triglycine-sulfate surfaces has been investigated using a cylindrical sector analyzer and an imaging retarding field analyzer. Space-resolved emission photography and energy distribution measurements were obtained, revealing the effect of ferroelectric switching on the electric field distribution and hence on the emission process. Evidence of secondary electron emission from the metal electrodes has been found.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gundel, H. Riege, E. J. N. Wilson, J. Handerek, K. Zioutas: Ferroelectrics 100, 1 (1989)CrossRefGoogle Scholar
  2. 2.
    O. Auciello, M. A. Ray, D. Palmer, J. Duarte, G. E. McGuire, D. Temple: Appl. Phys. Lett. 66, 2183 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    K. Biedrzycki, L. Markowski: Ferroelectrics 172 405 (1995)Google Scholar
  4. 4.
    A. S. Sidorkin, B. M. Darinskii: Appl. Surf. Sci. 111 325 (1997)Google Scholar
  5. 5.
    W. Zhang, W. Huebner, G.D. Waddill: Ferroelectrics 215, 75 (1998)CrossRefGoogle Scholar
  6. 6.
    K. Biedrzycki, L. Markowski, Z. Czapla: Phys. Status Solidi A 165, 283 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    M. Okuyama, Y. Morikawa, H. Zhu: J. Korean Phys. Soc. 35, 1525 (1999)Google Scholar
  8. 8.
    M. Klais, A. Averty, H. W. Gundel, G. Schönhense: Appl. Phys. A 78, 67 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    D. Averty, H. Gundel, R. Seveno, R. Le Bihan: Proc. 11th IEEE Int. Symp. on Appl. of Ferroelectrics (ISAF 1998), Montreux, Switzerland, August 1998. IEEE cat. num. 98CH36245Google Scholar
  10. 10.
    M. Angadi, O. Auciello, A. R. Krauss, H. W. Gundel: Appl. Phys. Lett. 77, 2659 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    K. Biedrzycki: Solid State Commun. 118 141 (2001)Google Scholar
  12. 12.
    Ch. Ziethen, O. Schmidt, G. H. Fecher, C. M. Schneider, G. Schönhense, R. Frömter, M. Seider, K. Grzelakowski, M. Merkel, D. Funnemann, W. Swiech, H. Gundlach, J. Kirschner: J. Electron Spectrosc. Relat. Phenom. 88, 983 (1998)CrossRefGoogle Scholar
  13. 13.
    G. Schönhense: J. Phys.: Condens. Matter 11 9517 (1999)Google Scholar
  14. 14.
    D. Averty, S.F. Liateni, R. Le Bihan: Ferroelectrics 173, 171 (1995)CrossRefGoogle Scholar
  15. 15.
    H. Gundel, J. Handerek, H. Riege, E. J. N. Wilson, K. Zioutas: Ferroelectrics 109, 137 (1990)CrossRefGoogle Scholar
  16. 16.
    P. Bravo: Modelisation d’une structure ferroélectrique en couche mince, Master’s thesis, University of Nantes, France, (2000)Google Scholar
  17. 17.
    H.W. Gundel: Electron Emission from Ferroelectrics: A New Generation of Pulsed Electron Beam Sources, PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany, (1996) (english), Shaker Verlag Aachen, ISBN 3-8265-1403-3, ISSN 0945-0963.Google Scholar
  18. 18.
    M. Escher (FOCUS GmbH): private communication, (2004)Google Scholar
  19. 19.
    S. Anders, H. A. Padmore, R. M. Duarte, T. Renner, T. Stammler,A. Scholl, M. R. Scheinfein, J. Stöhr, L. Séve, B. Sinkovic: Rev. Sci. Instr. 70, 3973 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institut f. PhysikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA)Université de NantesNantesFrance

Personalised recommendations