Advertisement

Applied Physics A

, Volume 81, Issue 6, pp 1207–1212 | Cite as

Direct characterization of nanoscale domain switching and local piezoelectric loops of (Pb,La)TiO3 thin films by piezoresponse force microscopy

  • R. PoyatoEmail author
  • M.L. Calzada
  • V.V. Shvartsman
  • A. Kholkin
  • P. Vilarinho
  • L. Pardo
Article

Abstract

〈111〉 and 〈001〉, 〈100〉 preferentially oriented lanthanum-modified lead titanate thin films have been studied at the nanometre scale by means of piezoresponse force microscopy. The nanoscale domain structures, domain switching, and local piezoelectric loops of the films have been analysed. The imaging of the domain structures after the application of a dc field suggests the existence of 90° and 180° domains within the regions with intermediate contrast. The variation of piezoresponse under an electric field in domains of two types has been discussed. Significant differences have been found between the local piezoelectric loops measured in the films deposited on different substrates. These differences are related to the different textures present in the films.

Keywords

Microscopy Thin Film Titanate Operating Procedure Electronic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.H. Haertling: J. Am. Ceram. Soc. 82, 797 (1999)CrossRefGoogle Scholar
  2. 2.
    O. Auciello, J.F. Scott, R. Ramesh: Phys. Today 51, 22 (1998)CrossRefGoogle Scholar
  3. 3.
    A. Gruverman, O. Auciello, H. Tokumoto: J. Vac. Sci. Technol. B 14, 602 (1996)CrossRefGoogle Scholar
  4. 4.
    J.A. Christman, R.R. Woolcott, A.I. Kingon, R.J. Nemanich: Appl. Phys. Lett. 73, 3851 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    H.R. Zeng, G.R. Li, Q.R. Yin, Z.K. Xu: Appl. Phys. A 76, 401 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    A. Gruverman, A. Kholkin, A. Kingon, H. Tokumoto: Appl. Phys. Lett. 78, 2751 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    A. Gruverman, H. Tokumoto, A.S. Prakash, S. Aggarwal, B. Yang, M. Wutting, R. Ramesh, T. Venkatesan: Appl. Phys. Lett. 71, 3492 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    A. Gruverman, O. Auciello, H. Tokumoto: Appl. Phys. Lett. 69, 3191 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    E.L. Colla, S. Hong, D.V. Taylor, A.K. Tagantsev, N. Setter, K. No: Appl. Phys. Lett. 72, 2763 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    A. Gruverman: Appl. Phys. Lett. 75, 1452 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    C. Yoshida, T. Tamura, K. Kondo, K. Takasaki: Appl. Phys. Lett. 79, 1339 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    A. Roelofs, U. Böttger, R. Waser, F. Schlaphof, S. Trogisch, L.M. Eng: Appl. Phys. Lett. 77, 3444 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    X. Chen, W. Zhu, W. Liu, Z. Wang: J. Vac. Sci. Technol. B 19, 2258 (2001)CrossRefGoogle Scholar
  14. 14.
    X. Chen, W. Zhu, O.K. Tan, X. Yao: Mater. Chem. Phys. 75, 90 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    R. Poyato, M.L. Calzada, L. Pardo: J. Eur. Ceram. Soc. 21, 1593 (2001)CrossRefGoogle Scholar
  16. 16.
    R. Poyato, M.L. Calzada, L. Pardo: J. Appl. Phys. 93, 4081 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    R. Poyato, M.L. Calzada, L. Pardo: Appl. Phys. A, DOI: 10.1007/s00339-003-2238-x (2003)Google Scholar
  18. 18.
    A.L. Kholkin, V.V. Shvartsman, A.Yu. Emelyanov, R. Poyato, M.L. Calzada, L. Pardo: Appl. Phys. Lett. 82, 2127 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    V.V. Shvartsman, M.L. Calzada, R. Poyato, L. Pardo, A.L. Kholkin: Ferroelectrics 295, 597 (2003)Google Scholar
  20. 20.
    M.L. Calzada, M. Algueró, L. Pardo: J. Sol–Gel Sci. Technol. 13, 837 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    K. Franke, J. Besold, W. Haessler, C. Seegebarth: Surf. Sci. Lett. 302, L283 (1994)Google Scholar
  22. 22.
    A. Gruverman, O. Auciello, H. Tokumoto: Annu. Rev. Mater. Sci. 28, 101 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    C. Harnagea, A. Pignolet, M. Alexe, D. Hesse: Integr. Ferroelectr. 44, 113 (2002)CrossRefGoogle Scholar
  24. 24.
    P. Paruch, T. Tybell, J.M. Triscone: Appl. Phys. Lett. 79, 530 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    J. Mendiola, B. Jiménez, C. Alemany, L. Pardo, L. del Olmo: Ferroelectrics 94, 183 (1989)CrossRefGoogle Scholar
  26. 26.
    M. Algueró, A.J. Bushby, M.J. Reece, R. Poyato, J. Ricote, M.L. Calzada, L. Pardo: Appl. Phys. Lett. 79, 3830 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    R. Poyato, M.L. Calzada, J. Ricote, L. Pardo, B. Willing: Integr. Ferroelectr. 35, 77 (2001)CrossRefGoogle Scholar
  28. 28.
    J. Ricote, R. Poyato, M. Algueró, L. Pardo, M.L. Calzada, D. Chateigner: J. Am. Ceram. Soc. 86, 1571 (2003)CrossRefGoogle Scholar
  29. 29.
    S. Hong, J. Woo, H. Shin, J.U. Jeon, Y.E. Pak, E.L. Colla, N. Setter, E. Kim, K. No: J. Appl. Phys. 89, 1377 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • R. Poyato
    • 1
    Email author
  • M.L. Calzada
    • 1
  • V.V. Shvartsman
    • 2
  • A. Kholkin
    • 2
  • P. Vilarinho
    • 2
  • L. Pardo
    • 1
  1. 1.Instituto de Ciencia de Materiales de Madrid (CSIC)MadridSpain
  2. 2.Departamento de Engenharia Cerâmica e do VidroUniversidade de AveiroAveiroPortugal

Personalised recommendations