Advertisement

Applied Physics A

, Volume 80, Issue 7, pp 1567–1571 | Cite as

Hydrothermal synthesis and microstructure investigation of nanostructured bismuth telluride powder

  • X.B. ZhaoEmail author
  • X.H. Ji
  • Y.H. Zhang
  • G.S. Cao
  • J.P. Tu
Article

Abstract

Nanostructured thermoelectric Bi2Te3 powders with various morphologies were hydrothermally synthesized using different precursors and routes to give an experimental comprehension on the formation of the nanopowders. It was found that the polyhedral Bi2Te3 particles are formed by surface nucleation in a continuous nucleation process, the hexagonal Bi2Te3 thin sheets are formed in a nucleus saturation process due to the anisotropic growth of the crystals, and the mono-atom reaction model leads to irregular bent thin Bi2Te3 sheets. Some quasi one-dimensional nanorods and nanotubes were also found in the synthesized Bi2Te3 powders.

Keywords

Microstructure Hexagonal Bismuth Reaction Model Hydrothermal Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.J. DiSalvo: Science 285, 703 (1999)CrossRefGoogle Scholar
  2. 2.
    B.S. Sales: Science 295, 1248 (2002)CrossRefGoogle Scholar
  3. 3.
    G.A. Slack, V.G. Tsoukala: J. Appl. Phys. 76, 1665 (1994)CrossRefGoogle Scholar
  4. 4.
    T.M. Tritt: Science 283, 804 (1999)CrossRefGoogle Scholar
  5. 5.
    B.C. Sales, D. Mandrus, R.K. Williams: Science 272, 1325 (1996)Google Scholar
  6. 6.
    G.S. Nolas, D.G. Vanderveer, A.P. Wilkinson, J.L. Cohn: J. Appl. Phys. 91, 8970 (2002)CrossRefGoogle Scholar
  7. 7.
    M.S. Sander, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy: Adv. Mater. 14, 665 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Martín-González, A.L. Prieto, R. Gronsky, T. Sands, A.M. Stacy: Adv. Mater. 15, 1003 (2003)CrossRefGoogle Scholar
  9. 9.
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn: Nature 413, 597 (2001)CrossRefGoogle Scholar
  10. 10.
    T.C. Harman, P.J. Taylor, M.P. Walsh, B.E. LaForge: Science 297, 2229 (2002)CrossRefGoogle Scholar
  11. 11.
    S.H. Yu, J. Yang, Y.S. Wu, Z.H. Han, J. Lu, Y. Xie, Y.T. Qian: J. Mater. Chem. 8, 1949 (1998)CrossRefGoogle Scholar
  12. 12.
    Y. Deng, X.S. Zhou, G.D. Wei, J. Liu, C.W. Nan, S.J. Zhao: J. Phys. Chem. Solids 63, 2119 (2002)CrossRefGoogle Scholar
  13. 13.
    M.A. Meitl, T.M. Dellinger, P.V. Braun: Adv. Funct. Mater. 13, 795 (2003)CrossRefGoogle Scholar
  14. 14.
    Y. Deng, G.D. Wei, C.W. Nan: Chem. Phys. Lett. 368, 639 (2003).CrossRefGoogle Scholar
  15. 15.
    Y. Deng, C.W. Nan, G.D. Wei, L. Guo, Y.H. Lin: Chem. Phys. Lett. 374, 410 (2003)CrossRefGoogle Scholar
  16. 16.
    X.B. Zhao, Y.H. Zhang, X.H. Ji: Inorg. Chem. Comm. 7, 386 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    X.B. Zhao, X.H. Ji, Y.H. Zhang, B.H. Lu: J. Alloys Compd. 368, 349 (2004)CrossRefGoogle Scholar
  18. 18.
    JCPDS-ICDD 1999, International Centre for Diffraction Data, 12 Campus Boulevard, Newtown Square, PA 19073-3273, U.S.A.Google Scholar
  19. 19.
    D.A. Porter, K.E. Easterling: Phase Transformations in Metals and Alloys (Chapman & Hall, London, UK, 2nd edition 1992) pp. 198–200Google Scholar
  20. 20.
    Y.C. Ha, H.J. Sohn, G.J. Jeong, C.K. Lee, K.I. Rhee: J. Appl. Electrochem. 30, 315 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • X.B. Zhao
    • 1
    Email author
  • X.H. Ji
    • 1
  • Y.H. Zhang
    • 1
  • G.S. Cao
    • 1
  • J.P. Tu
    • 1
  1. 1.State Key Laboratory of Silicon MaterialsZhejiang UniversityHangzhouChina

Personalised recommendations