Advertisement

Applied Physics A

, Volume 79, Issue 8, pp 1839–1842 | Cite as

Diffusion-limited photopolymerization in scanning micro-stereolithography

  • N. Fang
  • C. Sun
  • X. ZhangEmail author
Rapid communication

Abstract

The trade-off between process speed and resolution in microstereolithography (μSL) roots on the diffusion-limited kinetics of photopolymerization. Using a numerical model, we have investigated the influence of diffusion dominant effect under high photon flux. Radical depletion turned out to limit the smallest feature achievable to the order of 10 μm under high process speed. A solution of pulsed laser curing is proposed in order to realize sub-micron resolution in high speed μSL process.

Keywords

Pulse Laser Numerical Model Process Speed Photon Flux Dominant Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Ikuta, K. Hirowatari: Proc. IEEE MEMS’93, 42 (1993)Google Scholar
  2. 2.
    X. Zhang, X.N. Jiang, C. Sun: Sens. & Act. A 7, 149 (1999)CrossRefGoogle Scholar
  3. 3.
    B.H. Cumpston, S. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry: Nature 398, 51 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    S. Kawata, H.-B. Sun, T. Tanaka, K. Takada: Nature 412, 697 (2001)ADSCrossRefGoogle Scholar
  5. 5.
    K. Ikuta, T. Ogata, M. Tsubio, S. Kojima: Proc. IEEE, The Ninth Annual International Workshop on MEMS, New York, 301 (1996)Google Scholar
  6. 6.
    J. Neumann, K.S. Wieking, D. Kip: Appl. Opt. 38, 5418 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    M. Straub, M. Ventura, M. Gu: Phys. Rev. Lett. 91, 043901 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    C. Sun: PhD thesis, Pennylvania State University, 2002Google Scholar
  9. 9.
    G.R. Tryson, A.R. Shultz: J. Polym. Sci. B17, 2059 (1979)Google Scholar
  10. 10.
    L. Flach, B. Chartoff: Polym. Eng. & Sci., 35, 483 (1995)CrossRefGoogle Scholar
  11. 11.
    M. Buback: Makrom. Chem. 191, 1575 (1990)CrossRefGoogle Scholar
  12. 12.
    M. Buback, R.G. Gilbert, G.T. Russell, D.J.T. Hill, G. Moad, K.F. O’Driscoll, J. Shen, M.A. Winnik: J. Polym. Sci. A 30, 851 (1992)CrossRefGoogle Scholar
  13. 13.
    M. Xi: Masters Thesis, Pennylvania State University, 2000Google Scholar
  14. 14.
    J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, M. Popall: Opt. Lett. 28, 301 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    I. Wang, M. Bouriau, P.L: Baldeck, C. Martineau, C. Andraud: Opt. Lett. 27, 1348 (2002)Google Scholar
  16. 16.
    S.B. Brown, C.M. Orlando: In: Encyclopedia of Polymer Science and Engineering, 2nd ed., Vol.14 (Wiley-Interscience, New York 1988) pp. 169–189Google Scholar
  17. 17.
    J. Brandrup, E.H. Immergut: Polymer Handbook, 3rd ed. (Wiley, New York 1989)Google Scholar
  18. 18.
    A. Reiser: Photoreactive polymers: the science and technology of resists (Wiley, New York 1989)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of California-Los Angeles Los AngelesUSA

Personalised recommendations