Applied Physics A

, Volume 81, Issue 3, pp 523–526 | Cite as

High-yield solvo-thermal synthesis of carbon nanotubes from sp3 hydrocarbons

  • G.Z. ShenEmail author
  • D. Chen
  • K.-B. Tang
  • Y.-T. Qian
  • C.-J. Lee


Carbon nanotubes have been successfully synthesized by a high-yield solvo-thermal process by using sp3-hydrocarbons as the carbon sources and solvents. Studies have shown that sp3-hydrocarbons used in the process not only act as the carbon sources and solvents, but also increase the yield of carbon nanotubes dramatically. Besides carbon nanotubes, some interesting carbon materials, such as carbon “olives”, carbon hollow spheres, carbon microtubes and “crossed” carbon nanotubes, were also obtained by the present route.


Thin Film Hydrocarbon Carbon Source Carbon Nanotubes Operating Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Iijima: Nature: 354, 56 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    R.S. Ruoff, D.C. Lorents: Carbon 33, 925 (1995)CrossRefGoogle Scholar
  3. 3.
    M.R. Pederson, J.Q. Broughton: Phys. Rev. Lett. 69, 2689 (1992)ADSCrossRefGoogle Scholar
  4. 4.
    J.W. Mintmire, B.I. Dunlap, C.T. White: Phys. Rev. Lett. 68, 631 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    T.W. Ebbesen, P.M. Ajayan: Nature 358, 220 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    A. Thess, R. Lee, P. Nikolaev, P. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fisher, R.E. Smalley: Science 273, 483 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    V. Ivanov, J.B. Nagy, P. Lambin, A. Lucas, X.B. Zhang, X.F. Zhang, D. Bernaerts, G. Vantedeloo, S. Amelinckx, J. Vanlanduyt: Chem. Phys. Lett. 223, 329 (1994)ADSCrossRefGoogle Scholar
  8. 8.
    J.F. Colomer, P. Piedigrosso, I. Willems, C. Journet, C. Bernier, G.V. Tedeloo, A. Fonseca, J.B. Nagy: J. Chem. Soc., Faraday Trans. 9, 3753 (1998)CrossRefGoogle Scholar
  9. 9.
    Y. Jiang, Y. Wu, X.Y. Zhang, C.Y. Xu, W.C. Yu, Y. Xie, Y.T. Qian: J. Am. Chem. Soc. 122, 12383 (2000)CrossRefGoogle Scholar
  10. 10.
    X.J. Wang, J. Lu, Y. Xie, G. Du, Q.X. Guo, S.Y. Zhang: J. Phys. Chem. B 106, 933 (2002)CrossRefGoogle Scholar
  11. 11.
    M.W. Shao, Q. Li, J. Wu, B. Xie, S.Y. Zhang, Y.T. Qian: Carbon 40, 2961 (2002)CrossRefGoogle Scholar
  12. 12.
    G. Hu, M.J. Cheng, D. Ma, X.H. Bao: Chem. Mater. 15, 1470 (2003)CrossRefGoogle Scholar
  13. 13.
    J.W. Liu, M.W. Shao, X.Y. Chen, W.C. Yu, X.M. Liu, Y.T. Qian: J. Am. Chem. Soc. 125, 8088 (2003).CrossRefGoogle Scholar
  14. 14.
    H.J. Dai: Accounts Chem. Res. 35, 1035 (2002)CrossRefGoogle Scholar
  15. 15.
    H.J. Dai: Surf. Sci. 500, 218 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Y.D. Li, Y.T. Qian, H.W. Liao, Y. Ding, L. Yang, C.Y. Xu, F.Q. Li, G.E. Zhou: Science 281, 246 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    M.S. Dresselhaus, G. Dresselhaus, M.A. Pimenta, P.C. Eklund: Analytical Applications of Raman Spectroscopy, M.J. Pelletier (ed.) (Blackwell Science, Oxford 1999) Chapt. 9Google Scholar
  18. 18.
    M. Joseyacaman, M. Mikiyoshida, L. Rendon, J.G. Santiesteban: Appl. Phys. Lett. 62, 657 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • G.Z. Shen
    • 1
    • 2
    Email author
  • D. Chen
    • 1
  • K.-B. Tang
    • 1
  • Y.-T. Qian
    • 1
  • C.-J. Lee
    • 2
  1. 1.Department of Chemistry and Structure Research LaboratoryUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Department of NanotechnologyHanyang UniversitySeoulSouth Korea

Personalised recommendations