Advertisement

Applied Physics A

, Volume 79, Issue 7, pp 1765–1767 | Cite as

Destabilization and enhanced dehydriding reaction of LiNH2: an electronic structure viewpoint

  • S. Orimo
  • Y. Nakamori
  • G. Kitahara
  • K. Miwa
  • N. Ohba
  • T. Noritake
  • S. Towata
Rapid communication

Abstract

First-principles calculations have been applied to lithium amide, LiNH2, to characterize its electronic structure. Based on the theoretical study, we predict that an effective method for destabilizing LiNH2 is to partially substitute Li by other elements with larger electronegativity, such as Mg. Experimental results on dehydriding reactions of LiNH2 with/without the partial Mg substitutions suggest the destabilization of the samples with increasing Mg concentrations, which is in good agreement with our prediction. The dehydriding reactions of LiNH2 with partial Mg substitutions are useful as hydrogen-storage materials for fuel-cell applications.

Keywords

Lithium Amide Large Electronegativity LiNH2 Structure Viewpoint 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Schlapbach, A. Züttel: Nature 414, 353 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    S. Orimo, H. Fujii: Appl. Phys. A 72, 167 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    T. Noritake, M. Aoki, S. Towata, Y. Seno, Y. Hirose, E. Nishibori, M. Takata, M. Sakata: Appl. Phys. Lett. 80, 318 (2002)CrossRefGoogle Scholar
  4. 4.
    S. Orimo, G. Majer, T. Fukunaga, A. Züttel, L. Schlapbach, H. Fujii: Appl. Phys. Lett. 75, 3093 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    P. Wang, S. Orimo, T. Matsushima, H. Fujii, G. Majer: Appl. Phys. Lett. 80, 318 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    B. Bogdanović, G. Sandrock: Mater. Res. Soc. Bull. 27, 712 (2002)CrossRefGoogle Scholar
  7. 7.
    B. Bogdanović, M. Schwickardi: J. Alloys Compd. 253, 1 (1997); Appl. Phys. A 72, 221 (2001)CrossRefGoogle Scholar
  8. 8.
    C.M. Jensen, K.J. Gross: Appl. Phys. A 72, 231 (2001)CrossRefGoogle Scholar
  9. 9.
    D. Sun, T. Kiyobayashi, H. Takeshita,N. Kuriyama, C.M. Jensen: J. Alloys Compd. 337, L8 (2002)Google Scholar
  10. 10.
    G.P. Meisner, G.G. Tibbetts, F.E. Pinkerton, C.H. Olk, M.P. Balogh: J. Alloys Compd. 337, 254 (2002)CrossRefGoogle Scholar
  11. 11.
    G. Sandrock, K. Gross, G. Thomas: J. Alloys Compd. 339, 229 (2002)CrossRefGoogle Scholar
  12. 12.
    H. Morioka, K. Kakizaki, S.-C. Chung, A. Yamada: J. Alloys Compd. 353, 310 (2003)CrossRefGoogle Scholar
  13. 13.
    M.E. Arroyo y de Dompablo, G. Ceder: J. Alloys Compd. 364, 6 (2004)CrossRefGoogle Scholar
  14. 14.
    P. Chen, Z. Xiong, J. Luo, J. Lin, K.L. Tan: Nature 420, 302 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    T. Ichikawa, S. Isobe, N. Hanada, H. Fujii: J. Alloys Compd. 365, 271 (2004)CrossRefGoogle Scholar
  16. 16.
    Y. Nakamori, S. Orimo: J. Alloys Compd. 370, 271 (2004)CrossRefGoogle Scholar
  17. 17.
    Y. Nakamori, S. Orimo: Mater. Sci. Eng. B 108, 48 (2004)CrossRefGoogle Scholar
  18. 18.
    D. Vanderbilt: Phys. Rev. B 41, 7892 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    P. Hohenberg, W. Kohn: Phys. Rev. B 136, 864 (1964); W. Kohn, L.J. Sham: Phys. Rev. A 140, 1133 (1965)ADSCrossRefGoogle Scholar
  20. 20.
    K. Miwa, A. Fukumoto: Phys. Rev. B 65, 155114 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    The coexistence of 2 molars of LiH is necessary to prevent the formation of ammonia from LiNH2, as was reported by Chen et al.: J. Phys. Chem. 107, 10967 (2003)CrossRefGoogle Scholar
  22. 22.
    For the applications, hydrogen pressure–composition (p–c) isotherms are being measured to quantitatively estimate the destabilizationGoogle Scholar
  23. 23.
    A. Züttel, S. Rentsch, P. Fischer, P. Wenger, P. Sudan, P. Mauron, C. Emmenegger: J. Alloys Compd. 356357, 515 (2003)Google Scholar
  24. 24.
    S. Orimo, Y. Nakamori, A. Züttel: Mater. Sci. Eng. B 108, 51 (2004)CrossRefGoogle Scholar
  25. 25.
    K. Miwa, N. Ohba, S. Towata, Y. Nakamori, S. Orimo: Phys. Rev. B, in pressGoogle Scholar
  26. 26.
    H. Jacobs: Z. Anorg. Allg. Chem. 382, 97 (1971)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • S. Orimo
    • 1
  • Y. Nakamori
    • 1
  • G. Kitahara
    • 1
  • K. Miwa
    • 2
  • N. Ohba
    • 2
  • T. Noritake
    • 2
  • S. Towata
    • 2
  1. 1.Institute for Materials Research (IMR)Tohoku UniversitySendaiJapan
  2. 2.Toyota Central R & D Labs. Inc.AichiJapan

Personalised recommendations