Applied Physics A

, Volume 79, Issue 7, pp 1747–1751 | Cite as

Visible and near-infrared excited-state dynamics of single-walled carbon nanotubes

  • I.V. Rubtsov
  • R.M. Russo
  • T. Albers
  • P. Deria
  • D.E. Luzzi
  • M.J. Therien
Rapid communication

Abstract

Excited-state lifetimes of isolated single-walled semiconducting carbon nanotubes (SWNTs) have been measured for the first time; these excited states, observed over the 400- to 1800-nm spectral domain, possess lifetimes that range from several ps to more than 100 ps. Sub-ps to ps decay components are assigned to relaxation in SWNT bundles. Interrogation of the samples with different SWNT mean diameters further confirms the dependence of the excited-state lifetime on roll-up vector. The ratio of fast and slow decaying component contributions in the first van Hove band can be viewed as a measure of the bundle content.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds.): Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin 2001)Google Scholar
  2. 2.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley: Science 273, 483 (1996)Google Scholar
  3. 3.
    L.A. Girifalco, M. Hodak, R.S. Lee: Phys. Rev. B 62, 13104 (2000)CrossRefGoogle Scholar
  4. 4.
    J. Chen, A.M. Rao, S. Lyuksyutov, M.E. Itkis, M.A. Hamon, H. Hu, R.W. Cohn, P.C. Eklund, D.T. Colbert, R.E. Smalley, R.C. Haddon: J. Phys. Chem. B 105, 2525 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Niyogi, M.A. Hamon, H. Hu, B. Zhao, P. Bhowmik, R. Sen, M.E. Itkis, R.C. Haddon: Acc. Chem. Res. 35, 1105 (2002)CrossRefGoogle Scholar
  6. 6.
    M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley: Science 297, 593 (2002)CrossRefGoogle Scholar
  7. 7.
    M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, A.G. Yodh: Nano Lett. 3, 269 (2003)CrossRefGoogle Scholar
  8. 8.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus: Phys. Rev. B 61, 2981 (2000)CrossRefGoogle Scholar
  9. 9.
    S. Reich, C. Thomsen: Phys. Rev. B 62, 4273 (2000)CrossRefGoogle Scholar
  10. 10.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Science 298, 2361 (2002)CrossRefGoogle Scholar
  11. 11.
    S.T. Huxtable, D.G. Cahill, S. Shenogin, L. Xue, R. Ozisik, P. Barone, M. Usrey, M.S. Strano, G. Siddons, M. Shim, P. Keblinski: Nat. Mater. 2, 731 (2003)CrossRefGoogle Scholar
  12. 12.
    P. Nikolaev, M. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley: Chem. Phys. Lett. 313, 91 (1999)CrossRefGoogle Scholar
  13. 13.
    W. Zhou, J.E. Fischer: Thesis and unpublished resultsGoogle Scholar
  14. 14.
    I.V. Rubtsov, K. Susumu, G.I. Rubtsov, M.J. Therien: J. Am. Chem. Soc. 125, 2687 (2003)CrossRefGoogle Scholar
  15. 15.
    J.-S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, L. Capes: Phys. Rev. Lett. 90, 057404 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • I.V. Rubtsov
    • 1
  • R.M. Russo
    • 2
  • T. Albers
    • 1
  • P. Deria
    • 1
  • D.E. Luzzi
    • 2
  • M.J. Therien
    • 1
  1. 1.Department of ChemistryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Laboratory for Research on the Structure of Matter, Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations