Applied Physics A

, Volume 79, Issue 7, pp 1741–1745 | Cite as

Stop band tuning of three-dimensional photonic crystals through coating of semiconductor materials

  • Y.R. Lin
  • C.Y. Kuo
  • S.Y. LuEmail author
Rapid communication


Fine-tuning of stop band positioning, ranging from several nano meters to several tens of nano meters, was achieved through sequential thin layer coating of semiconductor materials onto the constituent particles of a three dimensional silica-based photonic crystal. Several semiconductor materials, including TiO2, CdS, and ZnSe, were successfully used to achieve a controllable red-shift of the stop band position of synthetic opal. The stop band shift observed in the present work can be explained by Bragg’s law. The coating operation is equivalent to replacing the lower dielectric constant of the material, i.e. the air around it, with a higher dielectric constant semiconductor materials, thus increasing the effective refractive index of the structure and giving a red-shift in the stop band.


TiO2 Refractive Index Dielectric Constant Photonic Crystal ZnSe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Yablonovitch: Phys. Rev. Lett. 58, 2059 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    S. John: Phys. Rev. Lett. 58, 2486 (1987)ADSCrossRefGoogle Scholar
  3. 3.
    D.J. Norris, Y.A. Vlasov: Adv. Mater. 13, 371 (2001)CrossRefGoogle Scholar
  4. 4.
    H. Ma, A.K.Y. Jen, L.R. Dalton: Adv. Mater. 14, 1339 (2002)CrossRefGoogle Scholar
  5. 5.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn: Photonic Crystals: Molding the Flow of Light, (Princenton Uni. Press, NJ 1995)Google Scholar
  6. 6.
    Photonic Crystals and Light Localization in the 21st Century, C.M. Soukoulis (ed.), Crystals (Kluwer, Boston 2001)Google Scholar
  7. 7.
    T.F. Krauss, R.M. De la Rue: Prog. Quant. Electron 23, 51 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    L. Eldada: Opt. Eng. 40, 1165 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Naykayama, M. Ozaki: Appl. Phys. Lett. 75, 932 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    S.W. Leonard, J.P. Mondia, H.M. Van Driel, O. Toader, S. John, K. Busch, A. Briner, U. Gösele, V. Lehmann: Phys. Rev. B 61, R2389 (1999)Google Scholar
  11. 11.
    J. Zhou, C.Q. Sun, K. Pita, Y.L. Lam, Y. Zhou, S.L. Ng, C.H. Kam, L.T. Li, Z.L. Gui: Appl. Phys. Lett. 78, 661 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Shimoda, M. Ozaki, K. Yoshino: Appl. Phys. Lett. 79, 3627 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    C.G. Xing, D. Peng: Langmuir. 15, 5535 (1999)CrossRefGoogle Scholar
  14. 14.
    K.P. Velikov, A. van Blaaderen: Langmuir 17, 4779 (2001)CrossRefGoogle Scholar
  15. 15.
    N.A. Dhas, A. Gedanken: Appl. Phys. Lett. 20, 2514 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    H. Miguez, A. Blanco, F. Meseguer, C. Lopez, H.M. Yates, M.E. Pemble, V. Fornes, A. Mifsud: Phys. Rev. B 59, 1563 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    W. Stöber, A. Fink, E. Bohn: J. Colloid Interface Sci. 26, 62 (1968)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Chemical EngineeringNational Tsing-Hua UniversityHsin-ChuP.R. China

Personalised recommendations