Applied Physics A

, Volume 79, Issue 8, pp 2069–2073

Mechanical properties of spruce wood cell walls by nanoindentation

  • W. Gindl
  • H.S. Gupta
  • T. Schöberl
  • H.C. Lichtenegger
  • P. Fratzl
Article

Abstract

In order to study the effects of structural variability, nanoindentation experiments were performed in Norway spruce cell walls with highly variable cellulose microfibril angle and lignin content. Contrary to hardness, which showed no statistically significant relationship with changing microfibril angle and lignin content, the elastic modulus of the secondary cell wall decreased significantly with increasing microfibril angle. While the elastic moduli of cell walls with large microfibril angle agreed well with published values, the elastic moduli of cell walls with small microfibril angle were clearly underestimated in nanoindentation measurements. Hardness measurements in the cell corner middle lamella allowed us to estimate the yield stress of the cell-wall matrix to be 0.34±0.16 GPa. Since the hardness of the secondary cell wall was statistically not different from the hardness of the cell corner middle lamella, irrespective of high variability in cellulose microfibril angle, it is proposed that compressive yielding of wood-cell walls is a matrix-dominated process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.K. Bledzki, J. Gassan: Prog. Polym. Sci. 24, 221 (1999)CrossRefGoogle Scholar
  2. 2.
    R.E. Mark: Cell Wall Mechanics of Tracheids (Yale University Press, New Haven 1967)Google Scholar
  3. 3.
    A. Reiterer, H. Lichtenegger, S. Tschegg, P. Fratzl: Philos. Mag. A 79, 2173 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    D. Fengel, G. Wegener: Wood. Chemistry, Ultrastructure, Reactions (De Gruyter, Berlin 1984)Google Scholar
  5. 5.
    B.J. Fergus, A.R. Procter, J.A.N. Scott, D.A.I. Goring: Wood Sci. Technol. 3, 117 (1969)CrossRefGoogle Scholar
  6. 6.
    D.H. Page, F. El-Hosseiny, K. Winkler, A.P.S. Lancaster: Tappi 60, 114 (1977)Google Scholar
  7. 7.
    I. Burgert, K. Frühmann, J. Keckes, P. Fratzl, S.E. Stanzl-Tschegg: Holzforschung 57, 661 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Bergander, L. Salmén: Holzforschung 54, 654 (2000)CrossRefGoogle Scholar
  9. 9.
    J. Keckes, I. Burgert, K. Frühmann, M. Müller, K. Kölln, M. Hamilton, M. Burghammer, S.V. Roth, S. Stanzl-Tschegg, P. Fratzl: Nat. Mater. 2, 810 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    M. Akerholm, L. Salmén: Polymer 42, 963 (2001)CrossRefGoogle Scholar
  11. 11.
    Z. Fan, J.G. Swadener, J.Y. Rho, M.E. Roy, G.M. Pharr: J. Orthopaed. Res. 20, 806 (2002)CrossRefGoogle Scholar
  12. 12.
    X. Li, B. Bhushan: Mater. Charact. 48, 11 (2002)CrossRefGoogle Scholar
  13. 13.
    H.C. Lichtenegger, T. Schöberl, M.H. Bartl, H. Waite, G.D. Stucky: Science 289, 389 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    R. Wimmer, B.N. Lucas, T.Y. Tsui, W.C. Oliver: Wood Sci. Technol. 31, 131 (1997)CrossRefGoogle Scholar
  15. 15.
    R. Wimmer, B.N. Lucas: IAWA J. 18, 77 (1997)CrossRefGoogle Scholar
  16. 16.
    T.E. Timell: Compression Wood in Gymnosperms (Springer, Berlin 1986)Google Scholar
  17. 17.
    P. Fratzl, H.F. Jakob, S. Rinnerthaler, P. Roschger, K. Klaushofer: J. Appl. Crystallogr. 30, 765 (1997)CrossRefGoogle Scholar
  18. 18.
    H. Lichtenegger, A. Reiterer, S.E. Stanzl-Tschegg, P. Fratzl: J. Struct. Biol. 128, 257 (1999)CrossRefGoogle Scholar
  19. 19.
    A. Reiterer, H.F. Jakob, S.E. Stanzl-Tschegg, P. Fratzl: Wood Sci. Technol. 32, 5 (1998)CrossRefGoogle Scholar
  20. 20.
    J.A.N. Scott, A.R. Procter, B.J. Fergus, D.A.I. Goring: Wood Sci. Technol. 3, 73 (1969)CrossRefGoogle Scholar
  21. 21.
    A.R. Spurr: Ultrastruct. Res. 26, 31 (1969)CrossRefGoogle Scholar
  22. 22.
    W.C. Oliver, G.M. Pharr: J. Mater. Res. 7, 1564 (1992)ADSCrossRefGoogle Scholar
  23. 23.
    M.F. Doerner, W.D. Nix: J. Mater. Res. 1, 601 (1986)ADSCrossRefGoogle Scholar
  24. 24.
    D. Tabor: ‘Indentation Hardness and its Measurement: Some Cautionary Comments’. In: Microindentation Techniques in Science and Engineering, ed. by P.J. Blau, P.R. Lawn (American Society for Testing and Materials, Philadelphia 1986) pp. 129–159Google Scholar
  25. 25.
    P.L. Larsson, A.E. Giannakopoulos, E. Söderlund, D.J. Rowcliffe, R. Vestergaard: Int. J. Solids Struct. 33, 221 (1996)CrossRefGoogle Scholar
  26. 26.
    A.E. Giannakopoulos, S. Suresh: Scr. Mater. 40, 1191 (1999)CrossRefGoogle Scholar
  27. 27.
    W. Gindl, A. Teischinger: Composites Part A 33, 1623 (2002)CrossRefGoogle Scholar
  28. 28.
    W. Gindl, H.S. Gupta, C. Günwald: Can. J. Bot. 80, 1029 (2002)CrossRefGoogle Scholar
  29. 29.
    T. Fujino, T. Itoh: Holzforschung 52, 111 (1998)CrossRefGoogle Scholar
  30. 30.
    L.A. Donaldson, A.P. Singh: Holzforschung 52, 449 (1998)CrossRefGoogle Scholar
  31. 31.
    J. Hafrén, T. Fujino, T. Itoh: Plant Cell Physiol. 40, 532 (1999)CrossRefGoogle Scholar
  32. 32.
    R.M. Kellogg, C.B.R. Sastry, R.W. Wellwood: Wood Fiber Sci. 7, 170 (1975)Google Scholar
  33. 33.
    L. Salmén, A. De Ruvo: Wood Fibre Sci. 17, 336 (1985)Google Scholar
  34. 34.
    A. Bergander, L. Salmén: J. Mater. Sci. 37, 151 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    J.G. Swadener, J.Y. Rho, G.M. Pharr: J. Biomed. Mater. Res. 57, 108 (2001)CrossRefGoogle Scholar
  36. 36.
    W. Gindl, T. Schöberl: Composites Part A, in print, available online, DOI: 10.1016/j.compositesa.2004.04.002Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • W. Gindl
    • 1
  • H.S. Gupta
    • 2
  • T. Schöberl
    • 3
  • H.C. Lichtenegger
    • 4
  • P. Fratzl
    • 2
  1. 1.Department of Materials Science and Process EngineeringBOKU ViennaViennaAustria
  2. 2.Department of BiomaterialsMax Planck Institute of Colloids and InterfacesPotsdamGermany
  3. 3.Erich Schmid Institute for Materials ScienceAustrian Academy of SciencesLeobenAustria
  4. 4.Institute for Materials Science & TestingVienna University of TechnologyViennaAustria

Personalised recommendations