Applied Physics A

, Volume 79, Issue 4–6, pp 1433–1437 | Cite as

Surface nanostructuring of metals by laser irradiation: effects of pulse duration, wavelength and gas atmosphere

  • A. Pereira
  • A. Cros
  • P. Delaporte
  • S. Georgiou
  • A. Manousaki
  • W. Marine
  • M. Sentis


Surface modifications by nanostructuring present a new laser application for improvement of surface properties such as adhesion, mechanical characteristics or corrosion protection. In this study, we report the formation of nanoparticles by laser irradiation of a steel surface. The influence of laser parameters such as pulse duration (25–30 ns, 500 fs), wavelength (248 nm, 308 nm), and the background gas pressure (10 mbar-1 bar) on the formation of this back deposition layer composed of aggregated iron oxide nanoparticles were investigated. Scanning electron microscopy and atomic force microscopy were used to characterise the irradiated steel surface and the particle morphology deposited by backward flux. In the nanosecond laser ablation regime, films are formed by aggregated nanoparticles with well developed cauliflower like structures, the size and the morphology depending on the nature and pressure of the background gas. In the femtosecond regime, we observed the formation of micrometer sized structures at the steel surface. In particular, a non-conventional mechanism of nanocluster condensation and growth is revealed since two different ablation rates corresponding to two different predominant processes are observed. These analyses demonstrate the possibility of controlling the distribution and the size of particles by varying the laser parameters and the background gas pressure and nature.


Atomic Force Microscopy Steel Surface Iron Oxide Nanoparticles Laser Parameter Ablation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Bäuerle: Laser processing and chemistry (Springer-Verlag, Berlin, Heildeberg 2000) p. 535Google Scholar
  2. 2.
    P. Schaaf: Prog. Mater. Sci. 47, 1 (2002)CrossRefGoogle Scholar
  3. 3.
    C.J. Copola, I. Avram, M.C. Terzzoli, S. Duhalde, C. Morales, T. Perez, F. Audebert, P. Delaporte, M. Sentis: Appl. Surf. Sci. 197/198, 896 (2002)Google Scholar
  4. 4.
    A. Pereira, A. Cros, P. Delaporte, W. Marine, M. Sentis: Appl. Surf. Sci. 197/198, 845 (2002)Google Scholar
  5. 5.
    A. Pereira, P. Delaporte, M. Sentis, A. Cros, W. Marine, A. Basillais, A.L. Thomann, C. Leborgne, N. Semmar, P. Andreazza, T. Sauvage: Thin Solid Films 453454, 16 (2004)Google Scholar
  6. 6.
    D.B. Chrisey, G.K. Hubler: Pulsed Laser Deposition of Thin Films (Wiley, NY 1994)Google Scholar
  7. 7.
    I.A. Movtchan, R.W. Dreyfus, W. Marine, M. Sentis, M. Autric, G. Le Lay, N. Merk: Thin Solid Films 255, 286 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    A. Pereira, A. Cros, P. Delaporte, W. Marine, M. Sentis: Appl. Surf. Sci. 208/209, 417 (2003)Google Scholar
  9. 9.
    I.A. Movtchan, W. Marine, R.W. Dreyfus, H.C. Le, M. Sentis, M. Autric: Appl. Surf. Sci. 96/98, 251 (1996)Google Scholar
  10. 10.
    W. Marine, L. Patrone, B. Luk’yanchuk, M. Sentis: Appl. Surf. Sci. 154/155, 345 (2000)Google Scholar
  11. 11.
    D. Bäuerle: Laser processing and chemistry (Springer-Verlag, Berlin, Heildeberg 2000) p. 70Google Scholar
  12. 12.
    T. Scharf, H.U. Krebs: Appl. Phys. A 75, 551 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    Gas Encyclopaedia (Elsevier, L’Air Liquide, Amsterdam 1976)Google Scholar
  14. 14.
    L. Patrone, D. Nelson, V.I. Safarov, M. Sentis, W. Marine, S. Giorgio: J. Appl. Phys. 87, 3829 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    B. Luk’yanchuk, W. Marine, S. Anisimov: Laser Phys. 8, 291 (1998)Google Scholar
  16. 16.
    T. Ohkubo, M. Kuwata, B. Luk’yanchuk, T. Yabe: Appl. Phys. A 77, 271 (2003)ADSGoogle Scholar
  17. 17.
    R. Stoian, A. Rosenfeld, D. Ashkenasi, I.V. Hertel, N.M. Bulgakova, E.E.B. Campbell: Phys. Rev. Lett. 88, 097603 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    N.M. Bulgakova, I.M. Bourakov: Appl. Surf. Sci. 197/198, 41 (2002)Google Scholar
  19. 19.
    K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller: Phys. Rev. E 62, 1202 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    V. Schmidt, W. Husinsky, G. Betz: Phys. Rev. Lett. 85, 3516 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    R. Teghil, L. D’Alessio, A. Santagata, M. Zaccagnino, D. Ferro, D.J. Sordelet: Appl. Surf. Sci. 210, 307 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. Von der Linde: J. Appl. Phys. 85, 3301 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    B. Luk’yanchuk, W. Marine: Appl. Surf. Sci. 154, 314 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A. Pereira
    • 1
  • A. Cros
    • 2
  • P. Delaporte
    • 1
  • S. Georgiou
    • 3
  • A. Manousaki
    • 3
  • W. Marine
    • 2
  • M. Sentis
    • 1
  1. 1.Lasers, Plasmas and Photonic Processes Laboratory (LP3) FRE 2165 CNRSUniversité de la MéditerranéeMarseille Cedex 9France
  2. 2.Groupe de Physique des Etats Condensés (GPEC) UMR 6631 CNRSUniversité de la MéditerranéeMarseille Cedex 9France
  3. 3.Institute of Electronic Structure and LaserFoundation for research and technology – Hellas (FORTH)HeraklionGreece

Personalised recommendations