Applied Physics A

, Volume 79, Issue 4–6, pp 823–825 | Cite as

Laser pulse length dependence of internal energy transfer in UV-MALDI-MS

  • A. Vertes
  • G. Luo
  • L. Ye
  • Y. Chen
  • I. Marginean


Recent internal energy (IE) measurements for various analytes in matrix-assisted laser desorption ionization (MALDI) have indicated that the amount of IE transferred to analytes not only depends on the matrix but also on the nature of the analyte. Common matrixes, such as α-cyano-4-hydroxycinnamic acid (CHCA), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA), and 2,5-dihydroxy-benzoic acid (DHB), had been characterized as “cold” or “hot” according to the IEs of analyte ions produced in the corresponding MALDI plume. In this contribution, we present evidence that IE transfer in MALDI depends on the matrix, analyte, as well as on the laser pulse properties. A substituted benzylpyridinium salt as a thermometer molecule (TM) was investigated in CHCA, SA, and DHB matrixes. A nitrogen laser (4 ns pulse length) and a mode locked frequency tripled Nd:YAG laser (22 ps pulse length) were used as excitation sources at various fluences. Survival yields (SYs) of the analyte molecular ions were extracted from the spectra and the corresponding IEs were obtained from Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The SYs indicate that the IEs of analyte ions in MALDI are analyte, matrix, and laser source dependent. The ion generation threshold fluences follow the same order for both lasers: CHCA<SA<DHB, but for the analyte the mode locked 3×ω Nd:YAG laser source requires a higher threshold fluence than the nitrogen laser. Despite the higher fluence, the SYs are generally higher (the corresponding IEs are lower) for the 3×ω Nd:YAG laser than for the nitrogen laser. The SYs of the TM molecular ions decrease with an increase of fluence for both the ns laser and the ps laser.


Internal Energy Pulse Length Nitrogen Laser Internal Energy Sinapinic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.G. Cooks, T. Ast, T. Pradeep, V. Wysocki: Accounts Chem. Res. 27, 316 (1994)CrossRefGoogle Scholar
  2. 2.
    K. Vekey: J. Mass Spectrom. 31, 445 (1996)CrossRefGoogle Scholar
  3. 3.
    R.G. Cooks, P.S.H. Wong: Accounts Chem. Res. 31, 379 (1998)CrossRefGoogle Scholar
  4. 4.
    C. Collette, L. Drahos, E. De Pauw, K. Vekey: Rapid. Commun. Mass. Spectrom. 12, 1673 (1998)CrossRefGoogle Scholar
  5. 5.
    L. Drahos, R.M.A. Heeren, C. Collette, E. De Pauw, K. Vekey: J. Mass. Spectrom. 34, 1373 (1999)CrossRefGoogle Scholar
  6. 6.
    E. Stevenson, K. Breuker, R. Zenobi: J. Mass. Spectrom. 35, 1035 (2000)CrossRefGoogle Scholar
  7. 7.
    K.F. Medzihradszky, J.M. Campbell, M.A. Baldwin, A.M. Falick,P. Juhasz, M.L. Vestal, A.L Burlingame: Anal. Chem. 72, 552 (2000)CrossRefGoogle Scholar
  8. 8.
    G.H. Luo, I. Marginean, A. Vertes: Anal. Chem. 74, 6185 (2002)CrossRefGoogle Scholar
  9. 9.
    J.-F. Greisch, V. Gabelica, F. Remacle, E. De Pauw: Rapid Commun. Mass. Spectrom. 17, 1847 (2003)CrossRefGoogle Scholar
  10. 10.
    C.D. Mowry, M.V. Johnston: J. Phys. Chem. 98, 1904 (1994)CrossRefGoogle Scholar
  11. 11.
    Z. Liu, L.W. Sumner: Proc. 51st ASMS Conf. Mass Spectrometry and Allied Topics, Montreal, Canada, 2003Google Scholar
  12. 12.
    G. Luo, I. Marginean, L. Ye, A. Vertes: Proc. 51st ASMS Conf. Mass Spectrometry and Allied Topics, Montreal, Canada, 2003Google Scholar
  13. 13.
    J.C. Tabet, S. Alves, V. Livadaris, F. Fournier, C. Afonso, J.-C. Blais: Proc. 51st ASMS Conf. Mass Spectrometry and Allied Topics, Montreal, Canada, 2003Google Scholar
  14. 14.
    A.L. Yergey, J.M. Campbell, P.S. Blank, M.L. Vestal: Proc. 51st ASMS Conf. Mass Spectrometry and Allied Topics, Montreal, Canada, 2003Google Scholar
  15. 15.
    A. Vertes, R. Gijbels, R.D. Levine: Rapid. Commun. Mass Spectrom. 4, 228 (1990)CrossRefGoogle Scholar
  16. 16.
    A. Vertes, R.D. Levine: Chem. Phys. Lett. 171, 284 (1990)ADSCrossRefGoogle Scholar
  17. 17.
    A. Bencsura, V. Navale, M. Sadeghi, A. Vertes: Rapid. Commun. Mass Spectrom. 11, 679 (1997)CrossRefGoogle Scholar
  18. 18.
    M. Sadeghi, X. Wu, A. Vertes: J. Phys. Chem. B 105, 2578 (2001)CrossRefGoogle Scholar
  19. 19.
    L. Zhu, G.R. Parr, M.C. Fitzgerald, C.M. Nelson, L.M. Smith: J. Am. Chem. Soc. 117, 6048 (1995)CrossRefGoogle Scholar
  20. 20.
    W. Tang, J. Krause, L. Zhu, L.M. Smith: Int. J. Mass Spectrom. Ion Processes 169, 301 (1997)ADSCrossRefGoogle Scholar
  21. 21.
    E. Stimson, O. Truong, W.J. Richter, M.D. Waterfield, A.L. Burlingame: Int. J. Mass Spectrom. Ion Processes 169, 231 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    D.M. Bubb, J.S. Horwitz, J.H. Callahan, R.A. McGill, E.J. Houser,D.B. Chrisey, M.R. Papantonakis, R.F. Haglund, Jr., M.C. Galicia,A. Vertes: J. Vac. Sci. Technol. A 19, 2698 (2001)ADSCrossRefGoogle Scholar
  23. 23.
    D.M. Bubb, B.R. Ringeisen, J.H. Callahan, M. Galicia, A. Vertes,J.S. Horwitz, R.A. McGill, E.J. Houser, P.K. Wu, A. Pique, D.B. Chrisey: Appl. Phys. A 73, 121 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    T. Baer, P.M. Mayer: J. Am. Soc. Mass Spectrom. 8, 103 (1997)CrossRefGoogle Scholar
  25. 25.
    F. Derwa, E. De Pauw, P. Natalis: Org. Mass Spectrom. 26, 117 (1991)CrossRefGoogle Scholar
  26. 26.
    Y. Chen, A. Vertes: J. Phys. Chem. A 107, 9754 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A. Vertes
    • 1
  • G. Luo
    • 1
  • L. Ye
    • 1
  • Y. Chen
    • 1
  • I. Marginean
    • 1
  1. 1.Department of ChemistryGeorge Washington UniversityWashingtonUSA

Personalised recommendations