Applied Physics A

, Volume 79, Issue 3, pp 469–480 | Cite as

Thin-film polycrystalline Si solar cells on foreign substrates: film formation at intermediate temperatures (700–1300 °C)

  • G. Beaucarne
  • S. Bourdais
  • A. Slaoui
  • J. Poortmans
Invited paper


We give an overview and analysis of research on thin-film polycrystalline Si solar cells on foreign substrates, with layers formed at intermediate temperatures (700–1300 °C), covering substrates, deposition techniques and solar cell processing. The main deposition techniques that have been investigated are solution growth (SG) and chemical vapour deposition (CVD). Insufficient nucleation on foreign substrates is an important problem with SG, which could be solved with appropriate surface preparation techniques and growth conditions. With CVD, continuous layers are achieved routinely, but the electronic quality of the material is usually very low. Solar cell performance appears to be limited by a very large recombination activity of grain boundaries. Improvement can be achieved reducing the grain boundary density and recombination activity, and experimental examples are given. Devices have been demonstrated with efficiencies up to 5.5%.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.H. Werner, R.B. Bergmann, R. Brendel: Solid State Phys. 34, 115 (1994) Google Scholar
  2. 2.
    R.B. Bergmann: Appl. Phys. A 69, 187 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    J.F. Nijs, J. Szlufcik, J. Poortmans, S. Sivothaman, R.P. Mertens: IEEE Trans. Electron Devices 46, 1948 (1999) ADSCrossRefGoogle Scholar
  4. 4.
    K.R. Catchpole, M.J. Mc Cann: “A review of thin film silicon for solar cell applications”, Proceedings 16th European Photovoltaic Solar Energy Conference (2000) pp. 1165–1168 Google Scholar
  5. 5.
    K.R. Catchpole, M.J. Mc Cann, K.J. Weber, A.W. Blakers: Solar Energy Mater. Solar Cells 68, 173 (2001) CrossRefGoogle Scholar
  6. 6.
    R. Brendel: Thin-film crystalline silicon solar cells – Physics and technology, Chapt. 4 (Wiley-VCH 2003) Google Scholar
  7. 7.
    C. Hebling, A. Eyer, F.R. Faller, A. Hurrle, R. Lüdemann, S. Reber, W. Wettling: Solid State Phys. 38, 663 (1998) Google Scholar
  8. 8.
    S. Reber, W. Wettling: Appl. Phys. A 69, 215 (1999) ADSCrossRefGoogle Scholar
  9. 9.
    R.B. Bergmann, J. Köhler, R. Dassow, C. Zaczek, H.J. Werner: Phys. Stat. Sol. (a) 166, 587 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    A.K. Ghosh, C. Fishman, T. Feng: J. Appl. Phys. 51, 446 (1980) ADSCrossRefGoogle Scholar
  11. 11.
    T.L. Chu: “Fabrication of polycrystalline solar cells on low-cost substrates”, USP no3961997 (1976) Google Scholar
  12. 12.
    T.L. Chu: “Development of low cost thin film polycrystalline silicon solar cells for terrestrial applications”, NSF report NSF/RANN/SE/AER/73-07843/PR/76/4 (1977) Google Scholar
  13. 13.
    C. Feldman, C.H. Arrington, N.A. Blum, F.G. Satkiewicz: “Vacuum-deposited polycrystalline silicon films for solar-cell applications”: SERI Subcontract report SERI/XS9/82781-4 (1980) Google Scholar
  14. 14.
    C. Feldman , N.A. Blum , F.G. Satkiewicz: “Vacuum deposited polycrystalline silicon solar cells for terrestrial use”, Proceedings 14th IEEE PVSC (1980) p. 391 Google Scholar
  15. 15.
    R. Monna, D. Angermeier, A. Slaoui, J.C. Muller, G. Beaucarne, J. Poortmans, C. Hebling: “Poly-Si films on graphite substrates by rapid thermal chemical vapor deposition for photovoltaic application”, Proceedings of the 14th EPVSEC (1997) p. 1456 Google Scholar
  16. 16.
    T. Reindl, W. Krühler, M. Pauli, J. Müller: “Electrical and structural properties of the Si/C interface in poly-Si thin films on graphite substrates”, Proceedings First WCPEC (1994) pp. 1406–1409 Google Scholar
  17. 17.
    G. Beaucarne, S. Bourdais, A. Slaoui, J. Poortmans: Solar Energy Mater. Solar Cells 61, 301 (2000) CrossRefGoogle Scholar
  18. 18.
    M. Tazawa, K. Yoshimura, K. Igarashi, S. Tanemura: Solar Energy Materials and Solar Cells 48, 315 (1997) CrossRefGoogle Scholar
  19. 19.
    S. Bourdais, F. Mazel, G. Fantozzi, A. Slaoui: Prog. Photovolt: Res. Appl. 7, 437 (1999) CrossRefGoogle Scholar
  20. 20.
    S. Reber , G. Stollwerck , D. Osswald , T. Kieliba , C. Hässler: “Crystalline silicon thin-film solar cells on silicon nitride ceramics”, Proceedings 16th EPVSEC (2000) pp. 1136–1139 Google Scholar
  21. 21.
    A. von Keitz, J.A.M. van Roosmalen, C.J.J. Tool, S.E.A. Schiermeier, A.J.M.M. van Zutphen, F. Fung , G.M. Christie: “Improvement of low cost ceramic substrates for use in thin film silicon solar cells”, Proceedings 2nd WCPVSEC (1998) pp. 1829–1832 Google Scholar
  22. 22.
    British patent application No. GB9603028.3 filing date 14.02.96, publication No. GB2310314 dated 20.08.1997 Google Scholar
  23. 23.
    R.B. Bergmann, R. Brendel, M. Wolf, P. Lölgen, J. Krinke, H.P. Strunk, J. Werner: Semicond. Sci. Technol. 12, 224 (1997) ADSCrossRefGoogle Scholar
  24. 24.
    N.I. Nemchuk, J.G. Couillard, D.G. Ast, F.P. Fehlner, L.R. Pinckney: “Novel Glass-ceramic substrates for thin film polycrystalline silicon solar cells”, Proceedings of the 9th Workshop on crystalline silicon solar cell materials and processes (1999) pp. 90–93 Google Scholar
  25. 25.
    T.H. Wang, T.F. Ciszek, M. Page, Y. Yan, R. Bauer, Q. Wang, J. Casey, R. Reedy, R. Matson, R. Ahrenkiel, M.M. Al-Jassim: “Material properties of polysilicon layers deposited by atmospheric pressure iodine vapor transport”, Proceedings 28th IEEE PVSC (2000) pp. 138–141 Google Scholar
  26. 26.
    A. Gutjahr , C. Grasso , S.E.A. Schiermeier , P.F. Fung , A. von Keitz: “Crystalline silicon growth on silicon nitride and oxynitride substrates for thin film solar cells”, Proceedings 16th EPVSEC (2000) pp. 1557–1560 Google Scholar
  27. 27.
    Z. Shi: “Solution growth of polycrystalline silicon thin films on glass substrates for low-cost photovoltaic cell application”, PhD thesis UNSW, Australia (1992) Google Scholar
  28. 28.
    S. Bourdais, R. Monna, D. Angermeier, A. Slaoui, N. Rauf, A. Laugier, F. Mazel, Y. Jorand, G. Fantozzi: “Combination of RT-CVD and LPE for thin silicon-film formation on alumina substrates”, Proceedings 2nd WCPVSEC (1998), pp. 1774–1777 Google Scholar
  29. 29.
    S.E.A. Schiermeier, C.J.J. Tool, J.A.M. van Roosmalen , L.J. Laas, A. von Keitz, W. C. Sinke: “LPE-growth of crystalline silicon layers on ceramic substrates”, Proceedings 2nd WCPVSEC (1998) pp. 1673–1676 Google Scholar
  30. 30.
    A. Gutjahr, I. Silier, G. Cristiani, M. Konuma, F. Banhart, V. Schöllkopf, H. Frey: “Silicon solar cell structure grown by liquid phase epitaxy on glassy carbon”, Proceedings of the 14th EPVSEC (1997) pp. 1460–1462 Google Scholar
  31. 31.
    J. Kühnle, R.B. Bergmann, J. Krinke, J.H. Werner: Mater. Res. Soc. Symp. Proc. 426, 111 (1996) CrossRefGoogle Scholar
  32. 32.
    Y. Bai, D.H. Ford, J.A. Rand, R.B. Hall, A.M. Barnett: “16.6% efficient Silicon-Film polycrystalline silicon solar cells”, Proceeding 26th IEEE PVSC (1997) p. 35 Google Scholar
  33. 33.
    S. Ito, Y. Kitagawa, T. Mishima, T. Yokoyama: “Direct-grown polycrystalline Si film on carbon substrate by LPE”, Technical digest 11th Int. PVSEC (1999) pp. 539–540 Google Scholar
  34. 34.
    G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs , R. Mertens: “Tailored Si-layers on silicon oxide obtained by thermal CVD”, Proceedings Material Research Symposium “Thin-Film Structures for Photovoltaics” Vol. 485 (1998), pp. 89–94 Google Scholar
  35. 35.
    Y. Ishikawa, Y. Yamamoto, T. Hatayama, Y. Uraoka, T. Fuyuki: “Crystallographic analysis of high quality poly-Si thin films deposited by atmospheric pressure chemical vapor deposition”, Technical digest 12th PVSEC (2001) pp. 437–438 Google Scholar
  36. 36.
    R. Monna, D. Angermeier, A. Slaoui, J.C. Muller, G. Beaucarne, J. Poortmans, C. Hebling: “Poly-Si films on graphite substrates by rapid thermal chemical vapor deposition for photovoltaic application”, Proceedings of the 14th EPVSEC (1997) pp. 1456–1459 Google Scholar
  37. 37.
    G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs , R. Mertens, D. Angermeier, S. Bourdais, R. Monna, A. Slaoui: “CVD-growth of crystalline Si on amorphous or microcrystalline substrates”, Proceedings of the 14th European Photovoltaic Solar Energy Conference (1997) pp. 1007–1010 Google Scholar
  38. 38.
    A. Slaoui, R. Monna, D. Angermeir, S. Bourdais, J.C. Muller: “Polycrystalline silicon films formation on foreign substrates by a rapid thermal-CVD technique”, Proceedings 26th IEEE-PVSEC (1997) pp. 627–630 Google Scholar
  39. 39.
    C. Schmidt, B.v. Ehrenwall, A. Braun, A. Püschel, S. Ruckmich, B. Tierock, M. Nell, H.-G. Wagemann: “Silicon deposition on structered ceramic substrates for thin film solar cells”, Proceedings 14th EPVSEC (1997) pp. 2694–2697 Google Scholar
  40. 40.
    M.E. Nell, A. Braun, B. von Ehrenwell, C. Schmidt, L. Elstner: “Solar cells from thin silicon layers on Al2O3”, Technical digest 11th Int. PVSEC-11 (1999) pp.749–750 Google Scholar
  41. 41.
    A.J.M.M. van Zutphen, A. von Keitz, M. Zeman, J.W. Metselaar: “Film-silicon deposition followed by phosphorus diffusion for photovoltaic application”, Proceedings 2nd WCPVSEC (1998) Google Scholar
  42. 42.
    A.J.M.M. van Zutphen, M. Zeman, J.W. Metselaar, A. von Keitz, C.J.J. Tool, G. Beaucarne, J. Poortmans: “Film silicon on ceramic substrates for solar cells”, Proceedings 16th EPVSEC (2000) pp. 1412–1415 Google Scholar
  43. 43.
    R.S. Wagner, W.C. Ellis: Appl. Phys. Lett. 4, 89 (1964) ADSCrossRefGoogle Scholar
  44. 44.
    D. Meakin, J. Stoemenos, P. Migliorato, N.A. Economou: J. Appl. Phys. 61, 5031 (1987) ADSCrossRefGoogle Scholar
  45. 45.
    J.H. Werner, K. Taretto, U. Rau: Solid State Phenomena 8081, 209 (2001) Google Scholar
  46. 46.
    S. Bourdais, G. Beaucarne, J. Poortmans, A. Slaoui: Physica B 273274, 544 (1999) Google Scholar
  47. 47.
    G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs, S. Bourdais, D. Angermeier, R. Monna, A. Slaoui: “Recrystallization-free thin-film crystalline silicon solar cells on foreign substrates”, Proceedings 2nd WCPVSEC (1998) pp. 1814–1817 Google Scholar
  48. 48.
    T.I. Kamins: “Polycrystalline silicon for integrated circuit applications”, Norwell, MA: Kluwer (1988) Google Scholar
  49. 49.
    D.A. Smith , T.Y. Tan: Mater. Res. Soc. Symp. Proc. 5, 65 (1982) CrossRefGoogle Scholar
  50. 50.
    R.E. Proano, D.G. Ast: J. Appl. Phys. 66, 2189 (1989) ADSCrossRefGoogle Scholar
  51. 51.
    B.L. Sopori, J. Alleman, W. Chen , T.Y. Tan , N.M. Ravindra: Mater. Res. Soc. Symp. Proc. 470, 419 (1997) CrossRefGoogle Scholar
  52. 52.
    G. Beaucarne: “Crystalline Si solar cells in thin layers deposited on foreign substrates using high-temperature chemical vapour deposition”, Ph.D. Thesis K.U. Leuven, 2000 Google Scholar
  53. 53.
    S. Bourdais: “Etude du dépôt et des propriétés physiques du silicium polycristallin obtenu par le procédé RTCVD sur substrats de mullite. Application aux cellules photovolta¨ıques en couches minces”, Ph.D. thesis, Université Louis Pasteur de Strasbourg (2000) Google Scholar
  54. 54.
    Y. Ishikawa, Y. Uraoka, T. Fuyuki: “Nucleation control towards the poly-Si thin films with large grain size utilizing intermittent supply of dichlorosilane”, to be published in Proceedings 3rd WCPEC (2003) Google Scholar
  55. 55.
    M.M. Mandurah, K.C. Saraswat, T.I. Kamins: “The physical and electrical properties of polycrystalline silicon”, Stanford Electronics Lab., Stanford Univ., Tech. Rep. G503-2 (1981) Google Scholar
  56. 56.
    B. v. Ehrenwall, C. Schmidt, A. Braun, M. Nell, H.-G. Wagemann: “Analysis of silicon growth on structured ceramic substrates for photovoltaic application” Proceedings 2nd WCPVSEC (1998), pp. 1370–1373 Google Scholar
  57. 57.
    M.W.M. Graef, L.J. Giling, J. Bloem: J. Appl. Phys. 48, 3937 (1977) ADSCrossRefGoogle Scholar
  58. 58.
    E. Rasmanis: Semiconductor Products, issue June 1963 (1963) pp. 30–33 Google Scholar
  59. 59.
    E. Rasmanis: “Method of forming single crystal films on a material in fluid form”, United States Patent Office, 3 139 361, patented June 30, 1964 Google Scholar
  60. 60.
    T. Yamada, T. Nishioka, M. Tachikawa, T. Yamada: “Deposition of polycrystalline silicon with large grain size from Al-Si melt”, Technical digest 11th PVSEC (1999) pp. 739–740 Google Scholar
  61. 61.
    T. Fuyuki, H. Yoshida , H. Matsunami: “Preferentially-oriented polycrystalline Si growth for thin-film solar cells using SiH2Cl2 decomposed in plasma”, Proceedings First WCPVSEC (1994) pp. 1383–1386 Google Scholar
  62. 62.
    H.S. Reehal, M.J. Thwaites, T.M. Bruton: Phys. Stat. Sol. (a) 154, 623 (1996) ADSCrossRefGoogle Scholar
  63. 63.
    T. Matsuyama , T. Baba , T. Takahama, S. Tsuda, S. Nakano: Solar Energy Mater. Solar Cells 34, 285 (1994) ADSCrossRefGoogle Scholar
  64. 64.
    D.Y. Kim, J.H. Lee, J.H. Park, J.K. Ko, J. Yi: “High temperature crystallized poly-Si on the Mo substrate for PV cell applications”, Proceedings conference ‘PV in Europe - From PV Technology to Energy Solutions’, Rome (2002) pp. 485–488 Google Scholar
  65. 65.
    A. Neugroschel, J.A. Mazer: IEEE Trans. Electron Devices, Vol. ED-29, No. 2, 225 (1982) Google Scholar
  66. 66.
    G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs, R. Mertens: Solid State phenomena Vols. 6768, 577 (1999) Google Scholar
  67. 67.
    G. Beaucarne, J. Poortmans, M. Caymax, J. Nijs, R. Mertens: IEEE Transactions on Electron Devices 47, 1118 (2000) ADSCrossRefGoogle Scholar
  68. 68.
    G. Beaucarne, S. Bourdais, A. Slaoui, J. Poortmans: “Carrier collection in fine-grained p-n junction polysilicon solar cells”, Proceedings 28th IEEE photovoltaic specialists conference (2000) pp. 128–133 Google Scholar
  69. 69.
    C. Feldman, N.A. Blum, F.G. Satkiewicz: Proceedings 14th IEEE PVSC (1980) p. 391 Google Scholar
  70. 70.
    S.C. Choo: Solid-State Electron. 39, 308 (1996) ADSCrossRefGoogle Scholar
  71. 71.
    C. Donolato: “Effective diffusion length of multicrystalline solar cells”, Semicond. Sci. Technol. 13, 781 (1998) Google Scholar
  72. 72.
    R.B. Bergmann: Recent Res. Devel. Crystal Growth Res. 1, 241 (1999) Google Scholar
  73. 73.
    P.P. Altermatt, G. Heiser: J. Appl. Phys. 91, 4271 (2002) ADSCrossRefGoogle Scholar
  74. 74.
    K. Taretto, U. Rau , J.H. Werner: J. Appl Phys. 93, 5447 (2003) ADSCrossRefGoogle Scholar
  75. 75.
    T. Matsuyama , N. Terada, T. Baba, T. Sawada, S. Tsuge, K. Wakisaka, S. Tsuda: J. Non-Cryst. Solids 198200, 940 (1996) Google Scholar
  76. 76.
    K. Yamamoto: IEEE Trans. Electron Devices 46, 2041 (1999) ADSCrossRefGoogle Scholar
  77. 77.
    T. Baba , M. Shima, T. Matsuyama , S. Tsuge, K. Wakisaka , S. Tsuda: “9.2% Efficiency thin-film polycrystalline silicon solar cell by a novel Solid Phase Crystallisation Method”, Proceedings 13th EPVSEC (1995) pp. 1708–1712 Google Scholar
  78. 78.
    P.A. Basore: “Large-area deposition for crystalline silicon on glass modules”, Proceedings 3rd WCPEC 2003 Osaka, to be published Google Scholar
  79. 79.
    G. Beaucarne, M. Caymax, I. Peytier, J. Poortmans: Solid State phenomena 8081, 269 (2001) Google Scholar
  80. 80.
    O. Nast, S. Wenham: J. Appl. Phys. 88, 124 (2000) ADSCrossRefGoogle Scholar
  81. 81.
    N.-P. Harder, J.A. Xia, S. Oelting, O. Nast, P. Widenborg, A.G. Aberle: “Low-temperature epitaxial thickening of sub-micron poly-Si seeding layers on glass made by aluminium-induced crystallisation”, Proceedings 28th IEEE PVSC (2000) pp. 351–354 Google Scholar
  82. 82.
    A.G. Aberle, P.I. Widenborg, A. Straub, N.-P. Harder: “Polycrystalline silicon on glass thin-film solar cell research at UNSW using the seed layer concept” to be published in Proceedings 3rd WCPEC (2003) Google Scholar
  83. 83.
    B. Rau, B. Selle, U. Knipper, S. Brehme, I. Sieber, M. Stöger, P. Schattschneider, S. Gall, W. Fuhs: “Low-temperature epitaxial Si absorber layers grown by electron-cyclotron resonance chemical vapor deposition”, to be published in Proceedings 3rd WCPEC (2003) Google Scholar
  84. 84.
    C. Ornaghi, G. Beaucarne, J. Poortmans, J. Nijs, R. Mertens: “Aluminium induced crystallization of amorphous silicon: Influence of materials characteristics on the reaction”, presented at E-MRS 2003, to be published in Thin Solid Films Google Scholar
  85. 85.
    E. Pihan, A. Slaoui, A. Focsa, P. Roca i Cabarrocas: “Polycrystalline silicon films on ceramic substrates by aluminium-induced crystallisation process”, to be published in Proceedings 3rd WCPEC (2003) Google Scholar
  86. 86.
    A. Rohatgi, V. Yelundur, J. Jeong, A. Ebong, M.D. Rosenblum, J.I. Hanoka: “Fundamental understanding and implementation of Al-enhanced PECVD SiNx hydrogenation in silicon ribbons”, Technical Digest of 12th Int. PVSEC (2001), pp. 609–612 Google Scholar
  87. 87.
    M.A. Green, S.R. Wenham: Appl. Phys. Lett. 65, 2907 (1994) ADSCrossRefGoogle Scholar
  88. 88.
    S. Bourdais, A. Slaoui, G. Beaucarne, J. Poortmans, E. Christoffel, A. Zerga: Solid State Phenomena 8284, 713 (2002) Google Scholar
  89. 89.
    R. Brendel, R.B. Bergmann, B. Fischer, J. Krinke, R. Plieninger, U. Rau, J. Reiss, H.P. Strunk, H. Wanka, J. Werner: “Transport analysis for polycrystalline silicon solar cells on glass substrates”, Proceedings 26th IEEE PVSC (1997) pp. 635–638 Google Scholar
  90. 90.
    A. Slaoui, S. Bourdais, G. Beaucarne, J. Poortmans, S. Reber: Solar Energy Mater. Solar Cells 71, 245 (2002) CrossRefGoogle Scholar
  91. 91.
    A.J.M.M. van Zutphen: Ph.D. thesis T.U. Delft (2001) Google Scholar
  92. 92.
    G. Beaucarne, A. Slaoui, J. Poortmans: Thin Solid Films 403404, 229 (2002) Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • G. Beaucarne
    • 1
  • S. Bourdais
    • 2
  • A. Slaoui
    • 2
  • J. Poortmans
    • 1
  1. 1.IMEC vzw.LeuvenBelgium
  2. 2.Laboratoire PHASE-CNRSStrasbourgFrance

Personalised recommendations