Applied Physics A

, Volume 79, Issue 4–6, pp 1243–1246 | Cite as

Pulsed-laser deposition of MgB2 and B thin films

  • D. MijatovicEmail author
  • A. Brinkman
  • H. Hilgenkamp
  • H. Rogalla
  • G. Rijnders
  • D.H.A. Blank


Thin films of the novel superconductor MgB2 were deposited from an Mg-enriched MgB2 target or by alternating ablation from Mg and B targets, depositing multilayers. The superconducting films were achieved in situ by a two-step process: deposition at low temperatures ranging from room temperature to 200 °C and subsequently heating to 600 °C. The color of the plasma originating from Mg or Mg-enriched MgB2 targets during the deposition is an indicator of the constituents of the plasma and can be used to adjust the plasma parameters like pressure and energy density. The films showed a reduced critical temperature (Tc) compared to the bulk value (39 K), which is attributed to the small grain sizes and the relatively high base pressure of the system (∼10-7 mbar) causing impurities (oxygen, carbon...). To investigate B oxidation and to determine the suitable deposition conditions for B, films made by pulsed-laser deposition (PLD) from B target were analyzed by XPS. The films are very sensitive to the ambient gas purity and the base pressure. We anticipate an improvement of Tc and the crystallinity of MgB2 thin films by using PLD in high vacuum and with a high purity Ar and H2 gas mixture.


Thin Film Energy Density Critical Temperature High Vacuum Plasma Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Akimitsu: Symposium on Transition metal Oxides, Sendai, January 10 (2001)Google Scholar
  2. 2.
    J. Nagamatsu, N. Nakagawa, T. Muramaka, Y. Zenitani, J. Akimitsu: Nature 410, 63 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    M. Jones, R. Marsh: J. Appl. Chem. Soc. 76, 1434 (1953)Google Scholar
  4. 4.
    A. Brinkman, D. Mijatovic, H. Hilgenkamp, G. Rijnders, I. Oomen, D. Veldhius, H. Rogalla, D.H.A. Blank: Supercond. Sci. Technol. 16, 246 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kim, R.K. Singh, N. Newman, J.M. Rowell: IEEE Trans. Appl. Supercond. 13, 3238 (2003)CrossRefGoogle Scholar
  6. 6.
    A. Brinkman, D. Mijatovic, G. Rijnders, V. Leca, H.J.H. Smilde, I. Oomen, A.A. Golubov, F. Roesthuis, S. Harkema, H. Hilgenkamp, D.H.A. Blank, H. Rogalla: Physica C 353, 1 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    V. Ferrando, S. Amoruso, E. Bellingeri, R. Bruzzese, P. Manfrinetti, D. Marre, R. Velotta, X. Wang, C. Ferdeghini: Supercond. Sci. Technol. 16, 241 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    L. Dirnberger, P.E. Dyer, S.R. Farra P.H. Key: Appl. Phys. A 59, 311 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    V.N. Tsaneva, N.A. Stelmashenkom, I.N. Martev, Z.H. Barber, M.G. Blamire: Vacuum 69, 267 (2003)CrossRefGoogle Scholar
  10. 10.
    D. Mijatovic, A. Brinkman, I. Oomen, D. Veldhius, G. Rijnders, H. Hilgenkamp, H. Rogalla, D.H.A. Blank: IEEE Trans. Appl. Supercond. 13, 3245 (2003)CrossRefGoogle Scholar
  11. 11.
    V.I. Nefedov: Zh. Neorg. Khim. 20, 2307 (1975)Google Scholar
  12. 12.
    From National Institute of Standards and Technology (NIST) XPS Database: www.nist.govGoogle Scholar
  13. 13.
    D.H.A. Blank, H. Hilgenkamp, A. Brinkman, D. Mijatovic, G. Rijnders, H. Rogalla: Appl. Phys. Lett. 79, 394 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    D. Mijatovic, A. Brinkman, G. Rijnders, H. Hilgenkamp, D.H.A. Blank, H. Rogalla: Physica C 372–6, 1258 (2002)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • D. Mijatovic
    • 1
    Email author
  • A. Brinkman
    • 1
  • H. Hilgenkamp
    • 1
  • H. Rogalla
    • 1
  • G. Rijnders
    • 1
  • D.H.A. Blank
    • 1
  1. 1.MESA+ Research Institute and Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations