Applied Physics A

, Volume 79, Issue 4–6, pp 1233–1235 | Cite as

Microstructure of pulsed laser deposited ceramic–metal and polymer–metal nanocomposite thin films

  • J. Faupel
  • C. Fuhse
  • A. Meschede
  • C. Herweg
  • H.U. Krebs
  • S. Vitta


Ceramic–metal (MgO combined with Fe, Ti and Ni80Nb20) and polymer–metal (polycarbonate combined with Ag and Pd) nanocomposite multilayers were deposited at room temperature by laser ablation (at 248 nm). The multilayers were characterized by X-ray reflectometry, infrared spectroscopy and transmission electron microscopy. In the case of MgO/metal multilayers, well-layered structures are produced down to layer periodicities of 1.2 nm, necessary for tunneling magnetoresistance devices and X-ray mirrors in the ‘water window’. The interface roughness in the case of polymer/metal multilayers is found to be a strong function of the metal layer thickness and also the nature of the metal.


Polymer Microstructure Thin Film Transmission Electron Microscopy Pulse Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.S. Moodera, L.R. Kinder: J. Appl. Phys. 79, 4724 (1996)ADSCrossRefGoogle Scholar
  2. 2.
    W.H. Butler, X.-G. Zhang, T.C. Schulthess, J.M. MacLaren: Phys. Rev. B 63, 54416 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    S. Vitta, M. Weisheit, T. Scharf, H.U. Krebs: Opt. Lett. 26, 1448 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    A.G. Michette: Rep. Prog. Phys. 51, 1525 (1988)ADSCrossRefGoogle Scholar
  5. 5.
    D.B. Chrisey, G.K. Hubler: Pulsed Laser Deposition of Thin Films (Wiley, New York 1994)Google Scholar
  6. 6.
    H.U. Krebs: J. Non-Equilib. Process. 10, 3 (1997)Google Scholar
  7. 7.
    D.L. Windt: J. Comput. Phys. 12, 360 (1998)CrossRefGoogle Scholar
  8. 8.
    J.A. Floro, S.J. Hearne, J.A. Hunter, P. Kotula, E. Chason, S.C. Seel, C.V. Thompson: J. Appl. Phys. 89, 4886 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    G.A. Johansson, M. Berglund, F. Eriksson, J. Birch, H.M. Hertz: Rev. Sci. Instrum. 72, 58 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    C. Fuhse, H.U. Krebs, S. Vitta, G.A. Johannson: submittedGoogle Scholar
  11. 11.
    T. Utigard: Z. Metallkd. 84, 792 (1993)Google Scholar
  12. 12.
    S. Wu: Polymer Interface and Adhesion (Marcel Dekker, New York 1996)Google Scholar
  13. 13.
    P. Jensen: Rev. Mod. Phys. 71, 1695 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    J. Carrey, J.-L. Maurice: Phys. Rev. B 65, 205401 (2002)ADSCrossRefGoogle Scholar
  15. 15.
    F.A. Nichols, W.W. Mullins: J. Appl. Phys. 36, 1826 (1965)ADSCrossRefGoogle Scholar
  16. 16.
    H. Mehl, O. Biham, I. Furman, M. Karimi: Phys. Rev. B 60, 2106 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J. Faupel
    • 1
  • C. Fuhse
    • 1
  • A. Meschede
    • 1
  • C. Herweg
    • 1
  • H.U. Krebs
    • 1
  • S. Vitta
    • 2
  1. 1.Institut für MaterialphysikUniversity of GöttingenGöttingenGermany
  2. 2.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations