Advertisement

Applied Physics A

, Volume 79, Issue 7, pp 1643–1655 | Cite as

Photomechanical spallation of molecular and metal targets: molecular dynamics study

  • E. Leveugle
  • D.S. Ivanov
  • L.V. ZhigileiEmail author
Article

Abstract

Microscopic mechanisms of photomechanical spallation are investigated in a series of large-scale molecular dynamics simulations performed for molecular and metal targets. A mesoscopic breathing sphere model is used in simulations of laser interaction with molecular targets. A coupled atomistic-continuum model that combines a molecular dynamics method with a continuum description of the laser excitation and subsequent relaxation of the conduction band electrons is used for metal targets. Similar mechanisms of the laser-induced photomechanical spallation are observed for molecular and metal targets. For both target materials, the relaxation of compressive stresses generated under conditions of stress confinement is found to be the main driving force for the nucleation, growth and coalescence of voids in a subsurface region of an irradiated target at laser fluences close to the threshold for fragmentation. The mechanical stability of the region subjected to the void nucleation is strongly affected by the laser heating and the depth of the spallation region in bulk targets is much closer to the surface as compared with the depth where the maximum tensile stresses are generated. Two stages can be identified in the evolution of voids in laser spallation, the initial void nucleation and growth, with the number of voids of all sizes increasing, followed by void coarsening and coalescence, when the number of large voids increases at the expense of the quickly decreasing population of small voids. The void volume distributions are found to be relatively well described by the power law N(V)∼V, with exponent gradually increasing with time. Comparison of the simulation results obtained for Ni films of two different thicknesses and bulk Ni targets suggests that the size/shape of the target plays an important role in laser spallation. The reflection of the laser-induced pressure wave from the back surface of a film results in higher maximum tensile stresses and lower threshold fluence for spallation. As the size of the film increases, the locations of the spallation region and the region of the maximum tensile stresses are splitting apart and the threshold fluence for spallation increases.

Keywords

Void Nucleation Maximum Tensile Stress Metal Target Conduction Band Electron Threshold Fluence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Paltauf, P.E. Dyer: Chem. Rev. 103, 487 (2003)CrossRefGoogle Scholar
  2. 2.
    A.A. Oraevsky, S.L. Jacques, F.K. Tittel: J. Appl. Phys. 78, 1281 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    G. Paltauf, H. Schmidt-Kloiber: Appl. Phys. A 62, 303 (1996)ADSCrossRefGoogle Scholar
  4. 4.
    D. Kim, M. Ye, C.P. Grigoropoulos: Appl. Phys. A 67, 169 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    I. Itzkan, D. Albagli, B.J. Banish, M. Dark, C. von Rosenberg, L.T. Perelman, G.S. Janes, M.S. Feld: AIP Conf. Proc. 288, 491 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    R. Cramer, R.F. Haglund, Jr., F. Hillenkamp: Int. J. Mass Spectrom. Ion Process. 169/170, 51 (1997)Google Scholar
  7. 7.
    R.L. Webb, J.T. Dickinson, G.J. Exarhos: Appl. Spectrosc. 51, 707 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    D.E. Hare, J. Franken, D.D. Dlott: J. Appl. Phys. 77, 5950 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    L.V. Zhigilei, B.J. Garrison: J. Appl. Phys. 88, 1281 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    A.G. Zhidkov, L.V. Zhigilei, A. Sasaki, T. Tajima: Appl. Phys. A 73, 741 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    L.V. Zhigilei: Appl. Phys. A 76, 339 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    L.V. Zhigilei, E. Leveugle, B.J. Garrison, Y.G. Yingling, M.I. Zeifman: Chem. Rev. 103, 321 (2003)CrossRefGoogle Scholar
  13. 13.
    R.L. Webb, L.C. Jensen, S.C. Langford, J.T. Dickinson: J. Appl. Phys. 74, 2323 (1993); ibid, 2338 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    A.A. Oraevsky, R. Esenaliev, S.L. Jacques, F.K. Tittel: SPIE Proc. Series 2391, 300 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    A. Vogel, V. Venugopalan: Chem. Rev. 103, 321 (2003)CrossRefGoogle Scholar
  16. 16.
    G.I. Kanel, S.V. Razorenov, A. Bogatch, A.V. Utkin, V.E. Fortov, D.E. Grady: J. Appl. Phys. 79, 8310 (1996)ADSCrossRefGoogle Scholar
  17. 17.
    S. Eliezer, E. Moshe, D. Eliezer: Laser Part. Beams 20, 87 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    D.S. Ivanov, L.V. Zhigilei: Phys. Rev. B 68, 064114 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    D.S. Ivanov, L.V. Zhigilei: Phys. Rev. Lett. 91, 105701 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    A. Miotello, R. Kelly: Appl. Phys. A 69, S67 (1999)Google Scholar
  21. 21.
    Y. Tsuboi, K. Hatanaka, H. Fukumura, H. Masuhara: J. Phys. Chem. A 102, 1661 (1998)CrossRefGoogle Scholar
  22. 22.
    L.V. Zhigilei, P.B.S. Kodali, B.J. Garrison: J. Phys. Chem. B 101, 2028 (1997); ibid. 102, 2845 (1998)CrossRefGoogle Scholar
  23. 23.
    L.V. Zhigilei, B.J. Garrison: Mater. Res. Soc. Symp. Proc. 538, 491 (1999)CrossRefGoogle Scholar
  24. 24.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man: Zh. Eksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)]ADSGoogle Scholar
  25. 25.
    X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly: Acta Mater. 49, 4005 (2001)CrossRefGoogle Scholar
  26. 26.
    J. Hohlfeld, S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias: Chem. Phys. 251, 237 (2000)CrossRefGoogle Scholar
  27. 27.
    R.S. Dingus, R.J. Scammon: SPIE Proc. 1427, 45 (1991)ADSCrossRefGoogle Scholar
  28. 28.
    D. Perez, L.J. Lewis: Phys. Rev. Lett. 89, 255504 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    S.I. Anisimov, V.V. Zhakhovskii, N.A. Inogamov, K. Nishihara, A.M. Oparin, Yu.V. Petrov: Pis’ma Zh. Eksp. Teor. Fiz. 77, 731 (2003) [JETP Lett. 77, 606 (2003)]Google Scholar
  30. 30.
    M.S. Daw, S.M. Foiles, M.I. Baskes: Mater. Sci. Rep. 9, 251 (1993)CrossRefGoogle Scholar
  31. 31.
    G. Paltauf, H. Schmidt-Kloiber: Appl. Phys. A 68, 525 (1999)ADSCrossRefGoogle Scholar
  32. 32.
    L.V. Zhigilei, B.J. Garrison: Appl. Surf. Sci. 127129, 142 (1998)Google Scholar
  33. 33.
    T.A. Schoolcraft, G.S. Constable, L.V. Zhigilei, B.J. Garrison: Anal. Chem. 72, 5143 (2000)CrossRefGoogle Scholar
  34. 34.
    A. Upadhyay, H.M. Urbassek: unpublishedGoogle Scholar
  35. 35.
    D.S. Ivanov, L.V. Zhigilei: Appl. Phys. A, DOI 10.1007/s00339-004-2607-0Google Scholar
  36. 36.
    I.S. Bitensky, E.S. Parilis: Nucl. Instrum. Methods Phys. Res., Sect. B 21, 26 (1987)ADSCrossRefGoogle Scholar
  37. 37.
    M.I. Fisher: Rep. Prog. Phys. 30, 615 (1967)ADSCrossRefGoogle Scholar
  38. 38.
    H.M. Urbassek: Nucl. Instrum. Methods Phys. Res., Sect. B 31, 541 (1988)ADSCrossRefGoogle Scholar
  39. 39.
    A. Strachan, T. Çagin, W.A. Goddard III: Phys. Rev. B 63, 060103 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    K. Sokolowski-Tinten, J. Bialkowski, A. Cavalleri, D. von der Linde, A. Oparin, J. Meyer-ter-Vehn, S.I. Anisimov: Phys. Rev. Lett. 81, 224 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Materials Science & EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations