Applied Physics A

, Volume 79, Issue 7, pp 1687–1694 | Cite as

Picosecond pulsed laser deposition at high vibrational excitation density: the case of poly(tetrafluoroethylene)

  • M.R. Papantonakis
  • R.F. Haglund Jr.


The availability of tunable, picosecond free-electron lasers operating with high efficiency in the mid-infrared opens a materials-processing regime qualitatively distinct from that accessed by femtosecond Ti:sapphire lasers, one which is characterized by a high spatio-temporal density of vibrational, rather than electronic, excitation. As an example of this novel materials-processing regime, we present new results on pulsed laser deposition of thin poly(tetrafluoroethylene) films. Films of poly(tetrafluoroethylene) were deposited by resonant (4.2 and 8.26 μm) and non-resonant (7.1 μm) infrared picosecond laser ablation from either a pressed powder target or a commercial bulk target. The films were smooth and crystalline and largely free of particulates without annealing. Infrared and X-ray photoelectron spectra indicated that the films retained the chemical properties of the starting material. Observations of the film properties are consistent with a steady-state ablation mechanism, possibly enhanced by non-linear absorption due to the high photon flux in the free-electron laser micropulses.


Pulse Laser Deposition Tetrafluoroethylene Picosecond Laser Picosecond Pulse Laser Ablation Mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies: J. Appl. Phys. 85, 4213 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    A.V. Rode, B. Luther-Davies, E.G. Gamaly: J. Appl. Phys. 85, 4222 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    G.R. Neil, C.L. Bohn, S.V. Benson, G. Biallas, D. Douglas, H.F. Dylla, R. Evans, J. Fugitt, A. Grippo, J. Gubeli, R. Hill, K. Jordan, G.A. Krafft, R. Li, L. Merminga, P. Piot, J. Preble, M. Shinn, T. Siggins, R. Walker, B. Yunn: Phys. Rev. Lett. 84, 5238 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Hill, A. Tokmakoff, K.A. Peterson, B. Sauter, D. Zimdars, D.D. Dlott, M.D. Fayer: J. Phys. Chem. 98, 11213 (1994)CrossRefGoogle Scholar
  5. 5.
    D.D. Dlott, M.D. Fayer: J. Opt. Soc. Am. B 6, 977 (1989)ADSCrossRefGoogle Scholar
  6. 6.
    D.M. Bubb, J.S. Horwitz, J.H. Callahan, R.A. McGill, E.J. Houser, D.B. Chrisey, M.R. Papantonakis, R.F. Haglund, M.C. Galicia, A. Vertes: J. Vac. Sci. Technol. A 19, 2698 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    D.M. Bubb, J.S. Horwitz, R.A. McGill, D.B. Chrisey, M.R. Papantonakis, R.F. Haglund, B. Toftmann: Appl. Phys. Lett. 79, 2847 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    D.M. Bubb, R.A. McGill, J.S. Horwitz, J.M. Fitz-Gerald, E.J. Houser, R.M. Stroud, P.W. Wu, B.R. Ringeisen, A. Pique, D.B. Chrisey: J. Appl. Phys. 89, 5739 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    D.M. Bubb, M.R. Papantonakis, J.S. Horwitz, R.F. Haglund, B. Toftmann, R.A. McGill, D.B. Chrisey: Chem. Phys. Lett. 352, 135 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    D.M. Bubb, M.R. Papantonakis, B. Toftmann, J.S. Horwitz, R.A. McGill, D.B. Chrisey, R.F. Haglund: J. Appl. Phys. 91, 9809 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    D.M. Bubb, B. Toftmann, R.F. Haglund, J.S. Horwitz, M.R. Papantonakis, R.A. McGill, P.W. Wu, D.B. Chrisey: Appl. Phys. A 74, 123 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    B. Hopp, T. Smausz, N. Kresz, P.M. Nagy, A. Juhasz, F. Ignacz, Z. Marton: Appl. Phys. A 76, 731 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    L. Holland, L. Laurenso, R.E. Hurley, K. Williams: Nucl. Instrum. Methods 111, 555 (1973)ADSCrossRefGoogle Scholar
  14. 14.
    M.A. Golub, T. Wydeven, A.L. Johnson: Langmuir 14, 2217 (1998)CrossRefGoogle Scholar
  15. 15.
    J.L. He, W.Z. Li, L.D. Wang, J. Wang, H.D. Li: Nucl. Instrum. Methods B 135, 512 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    T. Katoh, Y. Zhang: Appl. Surf. Sci. 138139, 165 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    D.B. Chrisey, A. Pique, R.A. McGill, J.S. Horwitz, B.R. Ringeisen, D.M. Bubb, P.K. Wu: Chem. Rev. 103, 553 (2003)CrossRefGoogle Scholar
  18. 18.
    D.B. Chrisey, G.K. Hilbert (eds.): Pulsed Laser Deposition of Thin Solid Films (Wiley, New York 1994)Google Scholar
  19. 19.
    W.B. Jiang, M.G. Norton, L. Tsung, J.T. Dickinson: J. Mater. Res. 10, 1038 (1995)ADSCrossRefGoogle Scholar
  20. 20.
    N. Huber, J. Heitz, D. Bauerle, R. Schwodiauer, S. Bauer, H. Niino, A. Yabe: Appl. Phys. A 72, 581 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    S.T. Li, E. Arenholz, J. Heitz, D. Bauerle: Appl. Surf. Sci. 125, 17 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    G.B. Blanchet, S.I. Shah: Appl. Phys. Lett. 62, 1026 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    T. Smausz, N. Kresz, B. Hopp: Appl. Surf. Sci. 177, 66 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    J. Heitz, J.T. Dickinson: Appl. Phys. A 68, 515 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    S. Kuper, M. Stuke: Appl. Phys. Lett. 54, 4 (1989)ADSCrossRefGoogle Scholar
  26. 26.
    Z.B. Wang, M.H. Hong, Y.F. Lu, D.J. Wu, B. Lan, T.C. Chong: J. Appl. Phys. 93, 6375 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, M. Obara: Appl. Phys. Lett. 65, 1850 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    M. Womack, M. Vendan, P. Molian: Appl. Surf. Sci. 221, 99 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Tsuboi, T. Kuro-Oka, K. Irie, A. Itaya: Appl. Phys. A 78, 339 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    M. Inayoshi, M. Hori, T. Goto, M. Hiramatsu, M. Nawata, S. Hattori: J. Vac. Sci. Technol. A 14, 1981 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    J. Pola, J. Kupcik, V. Blechta, A. Galikova, A. Galik, J. Subrt, J. Kurjata, J. Chojnowski: Chem. Mater. 14, 1242 (2002)CrossRefGoogle Scholar
  32. 32.
    B. Hopp, Z. Geretovszky, I. Bertoti, I.W. Boyd: Appl. Surf. Sci. 186, 80 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    G.S. Edwards, D. Evertson, W. Gabella, R. Grant, T.L. King, J. Kozub, M. Mendenhall, J. Shen, R. Shores, S. Storms, R.H. Traeger: IEEE J. Sel. Top. Quantum Electron. 2, 810 (1996)ADSCrossRefGoogle Scholar
  34. 34.
    C.A. Sperati: in Polymer Handbook, ed. by J. Bandrup, E.H. Immergut (Wiley, New York 1989)Google Scholar
  35. 35.
    B. Ivanov, C. Popov, M. Lekova, D. Yankova, G. Peev: Appl. Surf. Sci. 108, 297 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    G.B. Blanchet: J. Appl. Phys. 80, 4082 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    K.P. Adhi, R.L. Owings, T.A. Railkar, W.D. Brown, A.P. Malshe: Appl. Surf. Sci. 218, 17 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    J.F. Moulder: Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Prairie, MN 1995)Google Scholar
  39. 39.
    R.E. Moynihan: J. Am. Chem. Soc. 81, 1045 (1959)CrossRefGoogle Scholar
  40. 40.
    M.A. Golub, B.A. Banks, S.K. Rutledge, M.C. Kitral: in Fluorinated Surfaces, Coatings and Films, Vol. 787, ed. by D.G. Castner, D.W. Grainger (American Chemical Society, Washington, DC 2001) p. 213Google Scholar
  41. 41.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies: J. Appl. Phys. 85, 4213 (1999)ADSCrossRefGoogle Scholar
  42. 42.
    A. Vogel, V. Venugopalan: Chem. Rev. 103, 577 (2003)CrossRefGoogle Scholar
  43. 43.
    D.R. Ermer, M.R. Papantonakis, M. Baltz-Knorr, D. Nakazawa, R.F. Haglund: Appl. Phys. A 70, 633 (2000)ADSGoogle Scholar
  44. 44.
    A.M. Stoneham, M.M.D. Ramos, R.M. Ribeiro: Appl. Phys. A 69, S81 (1999)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Physics and Astronomy and W.M. Keck Foundation Free-Electron Laser CenterVanderbilt UniversityNashvilleUSA

Personalised recommendations