Advertisement

Applied Physics A

, Volume 79, Issue 8, pp 2049–2054 | Cite as

In situ alignment of carbon nanocoils and their field emission behavior induced by an electric field

  • E. Einarsson
  • D.W. Tuggle
  • J. Jiao
Article

Abstract

The alignment of nanocoils by an electric field was observed in situ inside a focused ion beam microscope. This alignment occurred at relatively low fields, before the onset of electron field emission. The emission behavior of individual nanocoils was also studied using a field emission probe system. The robust coils reached high emission currents, with more than 10 μA coming from individual coils at fields stronger than 4 V/μm. The emission behavior, however, was not wholly consistent with conventional field emission theory. Analysis of the data showed non-linear Fowler–Nordheim behavior. This phenomenon is usually attributed to thermal effects, but numerical calculations show that cannot be the case. The data plotted linearly on a Schottky plot, which should not be possible due to Schottky temperature dependence and resistive heating during emission.

Keywords

Field Emission High Emission Emission Current Resistive Heating Emission Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.R. Davis, R.J. Slawson, C.R. Rigby: Nature 171, 756 (1953)ADSCrossRefGoogle Scholar
  2. 2.
    W.R. Davis, R.J. Slawson, C.R. Rigby: Trans. Brit. Ceram. Soc. 56, 67 (1957)Google Scholar
  3. 3.
    M. Hillert, N. Lange: Z. Kristallogr. 111, 24 (1958)CrossRefGoogle Scholar
  4. 4.
    R.T.K. Baker et al.: J. Catal. 26, 51 (1972)CrossRefGoogle Scholar
  5. 5.
    L.S. Lobo, D.L. Trimm: J. Catal. 29, 15 (1973)CrossRefGoogle Scholar
  6. 6.
    R.T.K. Baker, P.S. Harris, S. Terry: Nature 253, (1975)Google Scholar
  7. 7.
    R.A. Dalla Metta, A.G. Piken, M.J. Shelef: J. Catal. 40, 173 (1975)CrossRefGoogle Scholar
  8. 8.
    L. Pan, M. Zhang, Y. Nakayama: J. Appl. Phys. 91, 10058 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    L. Pan, T. Hayashida, M. Zhang, Y. Nakayama: Jpn. J. Appl. Phys. 40, L235 (2001)Google Scholar
  10. 10.
    X. Chen, T. Saito, M. Kusunoki, S. Motojima: J. Mater. Res. 14, 4329 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    X. Chen, W. In-Hwang, S. Shimada, M. Fujii, H. Iwanaga, S. Motojima: J. Mater. Res. 15, 808 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    S. Motojima, M. Kawaguchi, K. Nozaki, H. Iwanaga: Appl. Phys. Lett. 56, 321 (1990)ADSCrossRefGoogle Scholar
  13. 13.
    S. Motojima. I. Hasegawa, S. Kagiya, M. Momiyama: Appl. Phys. Lett. 62, 2322 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    M. Zhang, Y. Nakayama, L. Pan: Jpn. J. Appl. Phys. 39, L1242 (2000)Google Scholar
  15. 15.
    R. Gomer: Field Emission and Field Ionization (Harvard University Press, Cambridge, MA 1961), 45–46Google Scholar
  16. 16.
    V.V. Zhirnov, C. Lizzul-Rinne, G.J. Wojak, R.C. Sanwald, J.J. Hren: J. Vac. Sci. Technol. B 19, 87 (2001)CrossRefGoogle Scholar
  17. 17.
    E. Einarsson, J. Jiao, J. Prado, G.M. Coia, J. Petty, L. Love: Mat. Res. Soc. Symp. Proc. 740(online), I3.20 (2002)Google Scholar
  18. 18.
    J. Jiao, E. Einarsson, D.W. Tuggle, L. Love, J. Prado, G.M. Coia: J. Mater. Res. 18, 2580 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer: Science 283, 1516 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    J. M Bonard, C. Klinke, K.A. Dean, B.F. Coll: Phys. Rev. B 67, 115406 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    A.G. Rinzler et al.: Science 269, 1550 (1995)ADSCrossRefGoogle Scholar
  22. 22.
    J.M. Bonard et al.: Phys. Rev. Lett. 81, 1441 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    M. Sveningsson, M. Jönsson, O.A. Nerushev, F. Rohmund, E.E.B. Campbell: Appl. Phys. Lett. 81, 1095 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    J.P. Barbour, W.W. Dolan, J.K. Trolan, E.E. Martin, W.P. Dyke: Phys. Rev. 92, 45 (1953)ADSCrossRefGoogle Scholar
  25. 25.
    N.S. Xu, Y. Chen, S.Z. Deng, J. Chen, X.C. Ma, E.G. Wang: J. Phys. D: Appl. Phys. 34, 1597 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    P.G. Collins, A. Zettl: Appl. Phys. Lett. 69, 1969 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    X. Xu, G.R. Brandes: Appl. Phys. Lett. 74, 2549 (1999)ADSCrossRefGoogle Scholar
  28. 28.
    K.A. Dean, B.R. Chalamala: Appl. Phys. Lett. 76, 375 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    V. Filip, D. Nicolaescu, F. Okuyama: J. Vac. Sci. Technol., B. 19, 1016 (2001)CrossRefGoogle Scholar
  30. 30.
    S.T. Purcell, P. Vincent, C. Journet, V.T. Binh: Phys. Rev. B 88, 105502 (2002)Google Scholar
  31. 31.
    P. Vincent, S.T. Purcell, C. Journet, V.T. Binh: Phys Rev. B 66, 075406 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    C.A. Brebbia, Ed.: Boundary Element Techniques in Computer-Aided Engineering (Kluwer Academic Publishers, Inc., Dordrecht 1991)Google Scholar
  33. 33.
    A. Modinos: Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum Press, New York 1984), pp 9–16Google Scholar
  34. 34.
    L.W. Swanson, A.E. Bell: Adv. In Electronics and Elec. Phys. 32, 193 Appendix (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of PhysicsPortland State UniversityPortlandUSA

Personalised recommendations