Applied Physics A

, Volume 79, Issue 4–6, pp 837–839

Fabrication of three-component composition spread thin film with controlled composition and thickness

  • P. Ahmet
  • Y.-Z. Yoo
  • K. Hasegawa
  • H. Koinuma
  • T. Chikyow


A novel method for the fabrication of three-component composition spread thin films was developed and used for the combinatorial exploration of materials. The composition and the thickness of the films could be precisely controlled during deposition. Any desired part of a complete ternary diagram could be deposited onto a single substrate by sequentially ablating target materials using a pulsed laser. Atomic mixing among compositions is achieved by adjusting the amount of target material deposited in each deposition step. The system could be especially useful in the search for new functional multi-component ultra-thin film materials, such as gate dielectrics.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    X.-D. Xiang, X. Sun, G. Briceno, Y. Lou, K. Wang, H. Chang, W.G. Wallace-Freedman, S. Chen, P.G. Schultz: Science 268, 1738 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    E. Danielson, J.H. Golden, E.W. McFarland, C.M. Reaves, W.H. Weinberg, X.D. Wu: Nature 389, 944 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    J. Wang, Y. Yoo, C. Gao, I. Takeuchi, X. Sun, H. Chang, X.-D. Xiang, P.G. Schultz: Science 279, 1712 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    R.B. van Dover, L.F. Schneemeyer, R.M. Fleming: Nature 392, 162 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    T. Fukumura, M. Ohtani, M. Kawasaki, Y. Okimoto, T. Kageyama, T. Koida, T. Hasegawa, Y. Tokura, H. Koinuma: Appl. Phys. Lett. 77, 3426 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    J.J. Hanak: J. Mater. Sci. 5, 964 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    L.F. Schneemeyer, R.B. Dover, R.M. Fleming: Appl. Phys. Lett. 75, 1967 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    H.M. Christen, S.D. Silliman, K.S. Harshavardhan: Rev. Sci. Instrum. 72, 2673 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    A.I. Kingon, J. Maria, S.K. Streiffer: Nature 406, 1032 (2000)CrossRefGoogle Scholar
  10. 10.
    K.J. Hubbard, D.G. Schlom: J. Matter. Res. 11, 2757 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    G.D. Wilk, R.M. Wallace, J.M. Anthony: J. Appl. Phys. 87, 484 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    W. Zhu, T.P. Ma, T. Tamagawa, Y. Di, J. Kim, R. Carruthers, M. Gibso, T. Furukawa: Tech. Dig. Int. Electron Devices Meet. 2001, 20.4.1 (2001)Google Scholar
  13. 13.
    D.A. Neumayer, E. Cartier: J. Appl. Phys. 90, 1801 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    G. Lucovsky, G.B. Rayner, R.S. Johnson: Microelectron. Reliab. 41, 937 (2001)CrossRefGoogle Scholar
  15. 15.
    T. Chikyow et al.: (in preparation)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • P. Ahmet
    • 1
  • Y.-Z. Yoo
    • 1
  • K. Hasegawa
    • 2
  • H. Koinuma
    • 2
  • T. Chikyow
    • 1
  1. 1.National Institute for Materials ScienceTsukubaJapan
  2. 2.Materials and Structures LaboratoryTokyo Institute of TechnologyYokohamaJapan

Personalised recommendations