Applied Physics A

, Volume 79, Issue 4–6, pp 1051–1055 | Cite as

Table-top 50-W laser system for ultra-fast laser ablation

  • B. Luther-Davies
  • V.Z. Kolev
  • M.J. Lederer
  • N.R. Madsen
  • A.V. Rode
  • J. Giesekus
  • K.-M. Du
  • M. Duering
Article

Abstract

We have built a mode-locked Nd:YVO4 laser with a very long resonator which produces an average power of 50 W in 13-ps pulses at 1064 nm and was designed for applications in micro-machining, the deposition of optical thin films, and the growth of nano-clusters in the laser-ablated plumes. By operating the laser at very low mode-locking repetition rates (1.5 MHz, 2.6 MHz, and 4.1 MHz), high pulse power is available in a near diffraction limited beam, allowing focused intensities to exceed 1012 W/cm2 and permitting efficient evaporation of difficult materials such as Si. The high power also allows conversion into the second harmonic at 532 nm with an efficiency exceeding 80%. Measurements of the ablation mass in experiments with metals show a 30–100 times increase in the ablation rate compared to the conventional low-repetition-rate ns-range lasers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies: J. Appl. Phys. 85, 4213 (1999)ADSCrossRefGoogle Scholar
  2. 2.
    A.V. Rode, B. Luther-Davies, E.G. Gamaly: J. Appl. Phys. 85, 4222 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    V.Z. Kolev, M.J. Lederer, B. Luther-Davies, A.V. Rode: Opt. Lett. 28, 1275 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    D. Herriott, H. Kogelnik, R. Kompfner: Appl. Opt. 3, 523 (1964)ADSCrossRefGoogle Scholar
  5. 5.
    U. Keller, D.A.B. Miller, G.D. Boyd, T.H. Chiu, J.F. Ferguson, M.T. Asom: Opt. Lett. 17, 505 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    M.J. Lederer, V. Kolev, B. Luther-Davies, H.H. Tan, C. Jagadish: J. Phys. D: Appl. Phys. 34, 2455 (2001)ADSCrossRefGoogle Scholar
  7. 7.
    D. Bäuerle: Laser Processing and Chemistry (Springer, Berlin 2000) and references thereinGoogle Scholar
  8. 8.
    D.B. Chrisey, G.K. Hubler: Pulsed Laser Deposition of Thin Films (Wiley, New York 1994) and references thereinGoogle Scholar
  9. 9.
    M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik: J. Appl. Phys. 85, 6803 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry: J. Opt. Soc. Am. B 13, 459 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    P.P. Pronko, P.A. van Rompay, C. Horvath, F. Loesel, T. Juhasz, X. Liu, G. Mourou: Phys. Rev. B 58, 2387 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    J. Bonse, S. Baudach, J. Kruger, W. Kautek, M. Lenzner: Appl. Phys. A 74, 19 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M. Hashida, A.F. Semerok, O. Gobert, G. Petite, Y. Izawa, J.F. Wagner: Appl. Surf. Sci. 197198, 862 (2002)Google Scholar
  14. 14.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tunnermann: Appl. Phys. A 63, 109 (1996)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Hirayama, M. Obara: Appl. Surf. Sci. 197198, 741 (2002)Google Scholar
  16. 16.
    E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk: Phys. Plasmas 9, 949 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    E.G. Gamaly, A.V. Rode, V.Z. Kolev, N.R. Madsen, M. Duering, J. Giesekus, B. Luther-Davies: ‘High-repetition-rate Laser–Solid Interaction: Cumulative Ablation’, COLA’03 (Crete, Greece, 5–10 October 2003)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • B. Luther-Davies
    • 1
  • V.Z. Kolev
    • 1
  • M.J. Lederer
    • 1
  • N.R. Madsen
    • 1
  • A.V. Rode
    • 1
  • J. Giesekus
    • 2
  • K.-M. Du
    • 2
  • M. Duering
    • 2
  1. 1.Laser Physics Centre, Research School of Physical Sciences and EngineeringThe Australian National UniversityCanberraAustralia
  2. 2.Fraunhofer Institut für LaserTechnikAachenGermany

Personalised recommendations