Applied Physics A

, Volume 79, Issue 4–6, pp 1009–1014

Bonding configurations in amorphous carbon and nitrogenated carbon films synthesised by femtosecond laser deposition

  • S.S. Roy
  • P. Papakonstantinou
  • R. McCann
  • J. McLaughlin
  • A. Klini
  • N. Papadogiannis


The effect of nitrogen addition and laser fluence on the atomic structure of amorphous carbon films (a-C) synthesized by femtosecond pulsed laser deposition has been studied. The chemical bonding in the films was investigated by means of X-ray photoelectron (XPS) and Raman spectroscopies. XPS studies revealed a decrease in the sp3 bonded carbon sites and an associated increase in the N-sp2C bonding sites with increasing nitrogen content in the CNx films. An increase in laser fluence from 0.36 to 1.7 J/cm2 led to a rise in sp3C sites. These results were further confirmed by Raman spectroscopy. The ID/IG ratio increased monotonically and G line-width decreased with the increase of nitrogen content in the films indicating a rise in either the number or the size of the sp2 clusters. Furthermore a visible excitation wavelength dependence study established the resonant Raman process in a-C and CNx films.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.S. Loir, F. Garrelie, J.L. Subtil, F. Goutaland, M. Belin, R. Le Harxic, C. Donnet, Y. Ouerdane, F. Rogemond P. Laporte: Appl. Surf. Sci. 208209, 553 (2003)Google Scholar
  2. 2.
    K.J. Koivusaari, J. Levoska, S. Leppavuori: J. Appl. Phys 85, 2915 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    Z.Y. Chen, J.P. Zhao, T. Yano, T. Ooie: J. Appl. Phys 92, 281 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    P. Papakonstantinou, N.A. Vainos, C. Fotakis: Appl. Surf. Sci. 151, 159 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    Zs. Geretovszky, Z. Kántor, T. Szõrényi: Appl. Surf. Sci. 208209, 547 (2003)Google Scholar
  6. 6.
    F. Qian, V. Craciun, R.K. Singh, S.D. Dutta, P. P Pronko: J. Appl. Phys. 86, 2281 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    Z. Geretovszky, Z. Kántor, I. Bertóti, T. Szõrényi: Appl. Phys. A 70, 9 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    P. Papakonstantinou, P. Lemoine: J. Phys.: Condens. Matter 13, 2971 (2001)ADSGoogle Scholar
  9. 9.
    P. Merel, M. Tabbal, M. Chaker, S. Moisa, J. Margot: Appl. Surf. Sci. 136, 105 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    K.W.R. Gilkes, S. Prawer, K.W. Nugent, J. Robertson, H.S. Sands, Y. Lifshitz, X. Shi: J. Appl. Phys. 87, 7283 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    A.C. Ferrari, S.E. Rodil, J. Robertson: Phys. Rev. B 67, 155306 (2003) and reference therein.ADSCrossRefGoogle Scholar
  12. 12.
    S.F. Muhl, J.M. Mendez: Diamond Relat. Mater. 8, 1809 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    N. Hellgren, M.P. Johansson, E. Broitman, L. Hultman, J.E. Sundgren: Phys. Rev. B 59, 5162 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    N. Hellgren, J. Guo, C. Sathe, A. Agui, J. Nordgren, Y. Luo, H. Ågren, J. Sundgren: Appl. Phys. Lett. 79, 4348 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    W.T. Scarf, D. Rott, D Yang, A.J. Barnard: J. Appl. Phys. 85, 3142 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    J.R. Shi, J.P. Wang, A.T.S. Wee, C.B. Yeo, C.T. Cheng, M. Ueda, S. Tomioka, J. Ohsako: J. Appl. Phys. 92, 5966 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    D. Das, K.H. Chen, S. Chattopadhyay, L.C. Chen: J. Appl. Phys. 91, 4944 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    J.C. Sánchez-López, C. Donnet, F. Lefèbvre, C. Fernández-Ramos, A. Fernández: J. Appl. Phys. 90, 675 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    J. Robertson: Mater. Sci. Eng. R37, 129 (2002)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • S.S. Roy
    • 1
  • P. Papakonstantinou
    • 1
  • R. McCann
    • 1
  • J. McLaughlin
    • 1
  • A. Klini
    • 2
  • N. Papadogiannis
    • 2
  1. 1.NIBEC, School of Electrical and Mechanical EngineeringUniversity of Ulster at JordanstownNewtownabbeyGreece
  2. 2.FORTHIESLCreteGreece

Personalised recommendations