Applied Physics A

, Volume 79, Issue 2, pp 379–382 | Cite as

Nanometric size control and treatment of historic paper manuscript and prints with laser light at 157 nm

  • Z. Kollia
  • E. Sarantopoulou
  • A.C. Cefalas
  • S. Kobe
  • Z. Samardzija
Article

Abstract

Laser cleaning of historic paper infected by foxing is far more effective at 157 nm than in other laser wavelengths because at 157 nm localized photo-dissociation of organic matter is taking place at low laser energy. In addition spatial control over exposed areas with resolution better than 100 nm is possible at this wavelength. In order to optimize the methods of laser cleaning of historic paper, foxing ablation experiments at 157 nm indicate that infected paper areas can be removed with controllable spatial resolution in the nanometer scale. In addition foxing samples were investigated by scanning electron microscopy and X-ray analysis. It was found that biological activity was present on paper areas containing traces of iron.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.C. Cefalas, E. Sarantopoulou, Z. Kollia: Appl. Phys. A 73, 571 (2001) ADSCrossRefGoogle Scholar
  2. 2.
    E. Sarantopoulou, Z. Samardzija, S. Kobe, Z. Kollia, A.C. Cefalas: Appl. Surf. Sci. 208209, 311 (2003) Google Scholar
  3. 3.
    R.J. Koestler, J. Vedral: Intern. Biodet. 28, 229 (1991) CrossRefGoogle Scholar
  4. 4.
    Y. Bashan, R. Lifshitz: Sust. Appl. Microbiol. 5, 564 (1984) CrossRefGoogle Scholar
  5. 5.
    E. Ioakimoglou, S. Boyatzis, P. Argitis, A. Fostiridou, K. Papapanagiotou, N. Yannovits: Chem. Mater. 11, 2013 (1999) CrossRefGoogle Scholar
  6. 6.
    R.E. Press: Int. Biodent. Bull. 12, 27 (1976) Google Scholar
  7. 7.
    H.J. Plenderleith, A.E. Werner: The conservation of antiqueties and works of art 2nd edn. (Oxford University Press, London 1971) Google Scholar
  8. 8.
    D. Hunter: Papermaking, 2nd edn. (Pleides, London 1947) Google Scholar
  9. 9.
    G.G. Meynell, R.J. Newsam: Nature 274, 466 (1978) ADSCrossRefGoogle Scholar
  10. 10.
    M.L.E. Florian: Studies in Conservation 16, 65 (1996) Google Scholar
  11. 11.
    G.G. Meynell, R.J. Newsam: Nature 27, 4466 (1978) Google Scholar
  12. 12.
    L. Nol, Y. Henis, R.G. Kenneth: Int. Biodeterioation Bull. 19, 19 (1983) Google Scholar
  13. 13.
    T. Ohtsuki, N. Yamada, H. Kobori, M.J. Osumi: Electron Microsc. 41, 270 (1992) Google Scholar
  14. 14.
    N.N. Saprykina, V.I. Kobyakova, A.L. Shakhmin: Russ. J. Appl. Chem. 72, 2188 (1999) Google Scholar
  15. 15.
    N.N. Saprykina, V.I. Kobyakova, A.L. Shakhmin: Russ. J. App. Chem. 72, 2188 (1999) Google Scholar
  16. 16.
    J. Caverhill, J. Stanley, B. Singer, I. Latimer: Restaurator 20, 57 (1999) Google Scholar
  17. 17.
    J. Kolar, M. Strlic, S. Pentzien, W. Kautek: Appl. Phys. A 71, 87 (2000) ADSGoogle Scholar
  18. 18.
    H.M. Szczepanowska, W.R. Moonmaw: J. Am. Inst. Conserv. 33, 25 (1994) CrossRefGoogle Scholar
  19. 19.
    J. Caverhill, I. Latimer, B. Singer: The Conservator 20, 65 (1996) CrossRefGoogle Scholar
  20. 20.
    A.C. Cefalas, N. Vassilopoulos, Z. Kollia, E. Sarantopoulou, C. Skordoulis: Appl. Phys. A 70, 21 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Z. Kollia
    • 1
  • E. Sarantopoulou
    • 1
  • A.C. Cefalas
    • 1
  • S. Kobe
    • 2
  • Z. Samardzija
    • 2
  1. 1.TPCINational Hellenic Research FoundationAthensGreece
  2. 2.Jozef Stefan InstituteLjubljanaGreece

Personalised recommendations