Advertisement

Applied Physics A

, Volume 78, Issue 8, pp 1157–1167 | Cite as

Optical absorption and electron energy loss spectra of carbon and boron nitride nanotubes: a first-principles approach

  • A.G. Marinopoulos
  • L. Wirtz
  • A. Marini
  • V. Olevano
  • A. RubioEmail author
  • L. Reining
Article

Abstract

We present results for the optical absorption spectra of small-diameter single-walled carbon and boron nitride nanotubes obtained by ab initio calculations in the framework of time-dependent density-functional theory. We compare the results with those obtained for the corresponding layered structures, i.e. the graphene and hexagonal boron nitride sheets. In particular, we focus on the role of depolarization effects, anisotropies, and interactions in the excited states. We show that the random phase approximation reproduces well the main features of the spectra when crystal local field effects are correctly included, and discuss to what extent the calculations can be further simplified by extrapolating results obtained for the layered systems to results expected for the tubes. The present results are relevant for the interpretation of data obtained by recent experimental tools for nanotube characterization, such as optical and fluorescence spectroscopies, as well as polarized resonant Raman scattering spectroscopy. We also address electron energy loss spectra in the small-q momentum-transfer limit. In this case, the interlayer and intertube interactions play an enhanced role with respect to optical spectroscopy.

Keywords

Boron Nitride Electron Energy Loss Spectroscopy Tube Axis Electron Energy Loss Spectrum Carbon Tube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Saito, G. Dresselhaus, M.S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998) Google Scholar
  2. 2.
    A. Rubio, J.L. Corkill, M.L. Cohen: Phys. Rev. B 49, 5081 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    X. Blase, A. Rubio, S.G. Louie, M.L. Cohen: Europhys. Lett. 28, 335 (1994); Phys. Rev. B 51, 6868 (1995) ADSCrossRefGoogle Scholar
  4. 4.
    R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Science 297, 787 (2002) and references therein ADSCrossRefGoogle Scholar
  5. 5.
    A.B. Dalton, S. Collins, E. Munõz, J.M. Razal, V.H. Ebron, J.P. Ferraris, J.N. Colemean, B.G. Kim, R.H. Baughman: Nature 423, 708 (2003) ADSGoogle Scholar
  6. 6.
    A. Modi, N. Koratkar, E. Lass, B. Wei, P.M. Ajayan: Nature 424, 171 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    J.-M. Bonard, T. Stöckly, F. Maier, W.A. de Heer, A. Châtelain, J.P. Salvetat, L. Forró: Phys. Rev. Lett. 81, 1441 (1998) ADSCrossRefGoogle Scholar
  8. 8.
    A.M. Fennimore, T.D. Yuzvinsky, W.-Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl: Nature 424, 408 (2003) ADSCrossRefGoogle Scholar
  9. 9.
    S. Tans, A.R.M. Verschueren, C. Dekker: Nature 393, 49 (1998) ADSCrossRefGoogle Scholar
  10. 10.
    R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, P. Avouris: Phys. Rev. Lett. 87, 256805 (2001) ADSCrossRefGoogle Scholar
  11. 11.
    M. Radosavljević, J. Appenzeller, V. Derycke, R. Martel, P. Avouris, A. Loiseau, J.-L. Cochon, D. Pigache: Appl. Phys. Lett. 82, 4131 (2003) ADSCrossRefGoogle Scholar
  12. 12.
    Combined scanning tunneling microscopy and spectroscopy (STM/STS) is a very reliable tool for local tube characterization [13]; however, it cannot be used for routine tube mappingGoogle Scholar
  13. 13.
    J.W.G. Wildöer, L. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker: Nature 391, 59 (1998); T.W. Odom, J.-L. Huang, P. Kim, C.M. Lieber: Nature 391, 62 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    M.S. Dresselhaus, G. Dresselhaus, P. Avouris (eds.): Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin 2001) Google Scholar
  15. 15.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Science 298, 261 (2003) Google Scholar
  16. 16.
    A. Hagen, T. Hertel: Nano Lett. 3, 383 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    J. Lefebvre, Y. Homma, P. Finnie: Phys. Rev. Lett. 90, 217401 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    A. Jorio, M.A. Pimenta, A.G. Souza Filho, G. Samsonidze, A.K. Swan, M.S. Ülü, B.B. Goldberg, R. Saito, G. Dresselhaus, M.S. Dresselhaus: Phys. Rev. Lett. 90, 107403 (2003); A. Jorio, G. Dresselhaus, M.S. Dresselhaus, M. Souza, M.S.S. Dantas, M.A. Pimenta, A.M. Rao, R. Saito, C. Liu, H.M. Cheng: Phys. Rev. Lett. 86, 1118 (2001); K. Kneipp, H. Kneipp, P. Corio, S.D.M. Brown, K. Shafer, J. Motz, L.T. Perelman, E.B. Hanlon, A. Marucci, G. Dresselhaus, M.S. Dresselhaus: Phys. Rev. Lett. 84, 3470 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    A.G. Marinopoulos, L. Reining, A. Rubio, N. Vast: Phys. Rev. Lett. 91, 046402 (2003) ADSCrossRefGoogle Scholar
  20. 20.
    L. Wirtz, V. Olevano, A.G. Marinopoulos, L. Reining, A. Rubio: in Molecular Nanostructures: XVII Int. Winterschool/Euroconference on Electronic Properties of Novel Materials, edited by H. Kuzmany, J. Fink, M. Mehring, S. Roth, AIP Conf. Proc. 685, 406 (2003) ADSGoogle Scholar
  21. 21.
    H. Kataura, Y. Kumazuwa, Y. Maniwa, L. Umezu, S. Suzuki, Y. Ohtsuka, Y. Achiba: Synth. Met. 103, 2555 (1999); M. Ichida, S. Mizuno, Y. Tani, Y. Saito, A. Nakamura: J. Phys. Soc. Jpn. 68, 3131 (1999); X. Liu, T. Pichler, M. Knupfer, M.S. Golden, J. Fink, H. Kataura, Y. Achiba: Phys. Rev. B 66, 045411 (2002) CrossRefGoogle Scholar
  22. 22.
    T. Pichler, M. Knupfer, M.S. Golden, J. Fink, A.G. Rinzler, R.E. Smalley: Phys. Rev. Lett. 80, 4729 (1998) ADSCrossRefGoogle Scholar
  23. 23.
    Z.M. Li, Z.K. Tang, H.J. Liu, N. Wang, C.T. Chan, R. Saito, S. Okada, G.D. Li, J.S. Chen, N. Nagasawa, S. Tsuda: Phys. Rev. Lett. 87, 127401 (2001); N. Wang, Z.K. Tang, G.D. Li, J.S. Che: Nature 408, 50 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    H. Ajiki, T. Ando: Physica B 201, 349 (1994); T. Ando: J. Phys. Soc. Jpn. 66, 1066 (1997) ADSCrossRefGoogle Scholar
  25. 25.
    C.L. Kane, E.J. Mele: Phys. Rev. Lett. 78, 1932 (1997); R. Egger, A.O. Gogolin: Phys. Rev. Lett. 79, 5082 (1997); C.L. Kane, L. Balents, M.P.A. Fisher: Phys. Rev. Lett. 79, 5086 (1997); R. Egger: Phys. Rev. Lett. 83, 5547 (1999) ADSCrossRefGoogle Scholar
  26. 26.
    C. Yannouleas, E.N. Bogachek, U. Landman: Phys. Rev. B 53, 10225 (1996); F.J. Garcia-Vidal, J.M. Pitarke, J.B. Pendry: Phys. Rev. Lett. 78, 4289 (1997) ADSCrossRefGoogle Scholar
  27. 27.
    M.F. Lin, K.W.K. Shung: Phys. Rev. B 50, 17744 (1994); S. Tasaki, K. Maekawa, T. Yamabe: Phys. Rev. B 57, 9301 (1998); M.F. Lin, F.L. Shyu, R.B. Chen: Phys. Rev. B 61, 14114 (2000); F.L. Shyu, M.F. Lin: Phys. Rev. B 62, 8508 (2000) ADSCrossRefGoogle Scholar
  28. 28.
    H.J. Liu, C.T. Chan: Phys. Rev. B 66, 115416 (2002); M. Machón, S. Reich, C. Thomsen, D. Sanchez-Portal, P. Ordejon: Phys. Rev. B 66, 155410 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    J.W. Mintmire, C.T. White: Synth. Met. 77, 231 (1996) CrossRefGoogle Scholar
  30. 30.
    I. Bozović, N. Bozović, M. Damnjanović: Phys. Rev. B 62, 6971 (2000); M. Ichidai, S. Mizuno, Y. Saito, H. Kataura, Y. Achiba, A. Nakamura: Phys. Rev. B 65, 241407 (2002) ADSCrossRefGoogle Scholar
  31. 31.
    G. Onida, L. Reining, A. Rubio: Rev. Mod. Phys. 74, 601 (2002) ADSCrossRefGoogle Scholar
  32. 32.
    See e.g. W. Kohn: Rev. Mod. Phys. 71, 1253 (1999); C. Fiolhais, F. Nogueira, M. Marques (eds.): A Primer in Density Functional Theory (Springer, Berlin 2003); Reviews in Modern Quantum Chemistry: A Celebration of the Contributions of R.G. Parr, edited by K.D. Sen (World Scientific, Singapore 2002) and references therein ADSCrossRefGoogle Scholar
  33. 33.
    L. Hedin, S. Lundqvist: in Solid State Physics, Vol. 23, edited by F. Seitz, D. Turnbull, H. Ehrenreich (Academic, New York 1969) p. 1; M.S. Hybertsen, S.G. Louie: Phys. Rev. Lett. 55, 1418 (1985); Phys. Rev. B 34, 5390 (1986); R.W. Godby, M. Schlüter, L.J. Sham: Phys. Rev. Lett. 56, 2415 (1986); Phys. Rev. B 37, 10159 (1988) ADSCrossRefGoogle Scholar
  34. 34.
    W.Z. Liang, G.H. Chen, A. Li, Z.-K. Tang: Appl. Phys. Lett. 80, 3415 (2002) ADSCrossRefGoogle Scholar
  35. 35.
    E. Runge, E.K.U. Gross: Phys. Rev. Lett. 52, 997 (1984); E.K.U. Gross, F.J. Dobson, M. Petersilka: Density Functional Theory (Springer, New York 1996) ADSCrossRefGoogle Scholar
  36. 36.
    A.G. Marinopoulos, L. Reining, V. Olevano, A. Rubio, T. Pichler, X. Liu, M. Knupfer, J. Fink: Phys. Rev. Lett. 89, 076402 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    P. Hohenberg, W. Kohn: Phys. Rev. 136, B864 (1964); W. Kohn, L.J. Sham: Phys. Rev. 140, A1133 (1965) Google Scholar
  38. 38.
    N. Troullier, J.L. Martins: Phys. Rev. B 43, 1993 (1991) ADSCrossRefGoogle Scholar
  39. 39.
    The ABINIT code is a common project of the Université Catholique de Louvain, Corning Incorporated, and other contributors (URL http://www.abinit.org) Google Scholar
  40. 40.
    H. Ehrenreich, M.H. Cohen: Phys. Rev. 115, 786 (1959); S.L. Adler: Phys. Rev. 126, 413 (1962); N. Wiser: Phys. Rev. 129, 62 (1963) ADSMathSciNetCrossRefGoogle Scholar
  41. 41.
    χ0 is expanded in reciprocal lattice vectors G , G’ and depends on ω and on the momentum transfer q . It describes the change of the density ϱ in response to the change of the total potential vtot (which in turn is composed of the Hartree, the exchange-correlation, and the external potentials): δϱ=χ0δvtot Google Scholar
  42. 42.
    Typically, for the systems and excitation energies treated in this work, it was sufficient to compute bands up to N=4nocc., where nocc. is the number of occupied bands. In certain cases, especially for evaluating the loss function, we included more unoccupied bands in the summations Google Scholar
  43. 43.
    M. Petersilka, U.J. Gossmann, E.K.U. Gross: Phys. Rev. Lett. 76, 1212 (1996) ADSCrossRefGoogle Scholar
  44. 44.
    In the irreducible wedges of the Brillouin zones of the tubes we used up to 22 k-points along the tube axis and a sufficient number of k-points along the circumferential directions Google Scholar
  45. 45.
    A. Rubio: Appl. Phys. A 68, 275 (1999) ADSCrossRefGoogle Scholar
  46. 46.
    L.X. Benedict, S.G. Louie, M.L. Cohen: Phys. Rev. B 52, 8541 (1995) ADSCrossRefGoogle Scholar
  47. 47.
    C.D. Spataru, S. Ismael-Beigi, L.X. Benedict, S.G. Louie: Phys. Rev. Lett. cond-mat/0310220 (in press) Google Scholar
  48. 48.
    Calculations are performed for a periodic array of nanotubes with an intertube distance of 14 a.u. The absolute value of εM(ω) scales with the dimension of the employed super-cell, but we are interested only in the relative absorption cross section σ(ω) in arbitrary units. The quasi-one-dimensional Brillouin zones of the tube are sampled by 20 irreducible k-points along the tube axis Google Scholar
  49. 49.
    Y.X. Zhao, I.L. Spain: Phys. Rev. B 40, 993 (1989) ADSCrossRefGoogle Scholar
  50. 50.
    A.G. Marinopoulos, L. Reining, A. Rubio, V. Olevano (to be submitted). We have used up to 16464 k-points for the Brillouin-zone sums, and 121 G -vectors in the matrices. Our results are fully converged with respect to the Brillouin-zone sampling for frequencies above 1 eV. A proper evaluation of the spectra at lower frequencies for this semimetal would require an improved treatment of intraband transitions, and is beyond the scope of the present work Google Scholar
  51. 51.
    F. Bassani, G.P. Parravicini: Nuovo Cimento 50, 95 (1967) CrossRefGoogle Scholar
  52. 52.
    See [53] for comparisons of the dielectric function obtained from different experiments Google Scholar
  53. 53.
    R. Klucker, M. Skibowski, W. Steinmann: Phys. Status Solidi B 65, 703 (1974) ADSCrossRefGoogle Scholar
  54. 54.
    R. Ahuja, S. Auluck, J.M. Wills, M. Alouani, B. Johansson, O. Eriksson: Phys. Rev. B 55, 4999 (1997) ADSCrossRefGoogle Scholar
  55. 55.
    K. Zeppenfeld: Thesis, University of Hamburg (1969); J. Daniels, C. Festenberg, H. Raether, K. Zeppenfeld: Springer Tracts Mod. Phys. 54, 77 (1970) Google Scholar
  56. 56.
    E. Tosatti, F. Bassani: Nuovo Cimento 65B, 161 (1970) CrossRefGoogle Scholar
  57. 57.
    H. Venghaus: Phys. Status Solidi B 71, 609 (1975) ADSCrossRefGoogle Scholar
  58. 58.
    D.L. Greenaway, G. Harbeke, F. Bassani, E. Tosatti: Phys. Rev. 178, 1340 (1969); G.S. Painter, D.E. Ellis: Phys. Rev. B 1, 4747 (1970) ADSCrossRefGoogle Scholar
  59. 59.
    For the two-dimensional Brillouin zone of the C sheet, we use a sampling of 87×87 k-points; for the BN sheet, 67×67 k-points; the inter-sheet distance is 6.35 Å in both cases. Google Scholar
  60. 60.
    J. Fink: Adv. Electron. Electron. Phys. 75, 121 (1989) and references therein CrossRefGoogle Scholar
  61. 61.
    Model calculations for a linear array of carbon tubes also show an important shift of the higher-frequency plasmon due to intertube interaction: G. Gumbs, G.R. Aizin: Phys. Rev. B 65, 195407 (2002) ADSGoogle Scholar
  62. 62.
    See e.g. W. Jones, N.H. March: Theoretical Solid State Physics, Vol. 1 (Wiley-Interscience, New York 1973) Google Scholar
  63. 63.
    R. Kuzuo, M. Terauchi, M. Tanaka: Jpn. J. Appl. Phys. 31, L1484 (1992) Google Scholar
  64. 64.
    G.G. Fuentes, E. Borowiak-Palen, T. Pichler, X. Liu, A. Graff, G. Behr, R.J. Kalenczuk, M. Knupfer, J. Fink: Phys. Rev. B 67, 035429 (2003) ADSCrossRefGoogle Scholar
  65. 65.
    C.L. Kane, E.J. Mele: Phys. Rev. Lett. 90, 207401 (2003) ADSCrossRefGoogle Scholar
  66. 66.
    L. Wirtz, A. Marini, V. Olevano, A.G. Marinopoulos, L. Reining, A. Rubio: work in progress Google Scholar
  67. 67.
    A. Hartschuh, E.J. Sánchez, X.S. Xie, L. Novotny: Phys. Rev. Lett. 90, 095503 (2003) ADSCrossRefGoogle Scholar
  68. 68.
    G.S. Duesberg, I. Loa, M. Burghard, K. Syassen, S. Roth: Phys. Rev. Lett. 85, 5436 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • A.G. Marinopoulos
    • 1
  • L. Wirtz
    • 2
  • A. Marini
    • 2
  • V. Olevano
    • 1
  • A. Rubio
    • 2
    Email author
  • L. Reining
    • 1
  1. 1.Laboratoire des Solides IrradiésÉcole PolytechniquePalaiseauFrance
  2. 2.Department of Material PhysicsUniversity of the Basque CountrySan SebastiánSpain

Personalised recommendations