Applied Physics A

, Volume 78, Issue 8, pp 1129–1136 | Cite as

Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes

  • C.D. Spataru
  • S. Ismail-Beigi
  • L.X. Benedict
  • S.G. Louie
Article

Abstract

We present a first-principles study of the effects of many-electron interactions on the optical properties of single-walled carbon nanotubes. Motivated by recent experiments, we have carried out ab initio calculations on the single-walled carbon nanotubes (3, 3), (5, 0) and (8, 0). The calculations are based on a many-body Green’s function approach in which both the quasiparticle (single-particle) excitation spectrum and the optical (electron–hole excitation) spectrum are determined. We show that the optical spectrum of both the semiconducting and metallic nanotubes studied exhibits important excitonic effects due to their quasi-one-dimensional nature. Binding energies for excitonic states range from zero for the metallic (5, 0) tube to nearly 1 eV for the semiconducting (8, 0) tube. Moreover, the metallic (3, 3) tube possesses exciton states bound by nearly 100 meV. Our calculated spectra explain quantitatively the observed features found in the measured spectra.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z.M. Li, Z.K. Tang, H.J. Liu, N. Wang, C.T. Chan, R. Saito, S. Okada, G.D. Li, J.S. Chen, N. Nagasawa, S. Tsuda: Phys. Rev. Lett. 87, 127 401 (2001) CrossRefGoogle Scholar
  2. 2.
    M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley: Science 297, 593 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman: Science 298, 2361 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    T. Ando: J. Phys. Soc. Jpn. 66, 1066 (1996) ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Misewich, R. Martel, Ph. Avouris, J.C. Tsang, S. Heinze, J. Tersoff: Science 300, 783 (2003) ADSCrossRefGoogle Scholar
  6. 6.
    M. Rohlfing, S.G. Louie: Phys. Rev. B 62, 4927 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    W. Kohn, L.J. Sham: Phys. Rev. 140, A1133 (1965) Google Scholar
  8. 8.
    M.S. Hybertsen, S.G. Louie: Phys. Rev. B 34, 5390 (1986) ADSCrossRefGoogle Scholar
  9. 9.
    L. Hedin: Phys. Rev. 139, A796 (1965) Google Scholar
  10. 10.
    G. Strinati: Phys. Rev. B 29, 5718 (1984) ADSCrossRefGoogle Scholar
  11. 11.
    N. Troullier, J.L. Martins: Phys. Rev. 43, 1993 (1991) ADSCrossRefGoogle Scholar
  12. 12.
    L. Kleinman, D.M. Bylander: Phys. Rev. Lett. 48, 1425 (1982) ADSCrossRefGoogle Scholar
  13. 13.
    X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie: Phys. Rev. Lett. 72 1878 (1994) Google Scholar
  14. 14.
    S.G. Louie: in Topics in Computational Materials Science, ed. by C.Y. Fong (World Scientific, Singapore 1997) p. 96 Google Scholar
  15. 15.
    H. Ajiki, T. Ando: Physica B 201, 349 (1994) ADSCrossRefGoogle Scholar
  16. 16.
    R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus: Appl. Phys. Lett. 60, 2204 (1992) ADSCrossRefGoogle Scholar
  17. 17.
    N. Hamada, S.I. Sawada, A. Oshiyama: Phys. Rev. Lett. 68, 1579 (1992) ADSCrossRefGoogle Scholar
  18. 18.
    Z.H. Levine, S.G. Louie: Phys. Rev. B 25, 6310 (1982) ADSCrossRefGoogle Scholar
  19. 19.
    H.J. Liu, C.T. Chan: Phys. Rev. B 66, 115 416 (2002) Google Scholar
  20. 20.
    M. Machon, S. Reich, C. Thomsen, D. Sanchez-Portal, P. Ordejon: Phys. Rev. B 66, 155 410 (2002) CrossRefGoogle Scholar
  21. 21.
    A.G. Marinopoulos, L. Reining, A. Rubio, N. Vast: Phys. Rev. Lett. 91, 046 402 (2003) CrossRefGoogle Scholar
  22. 22.
    The calculation for the (8, 0) tube (with 32 atoms in the unit cell) was already very challenging on modern supercomputers. We are currently studying the (4, 2) tube, which has 56 atoms in the unit cell, but this is a far more difficult calculation (our calculations scale as the number of atoms to the fourth power) Google Scholar
  23. 23.
    R. Loudon: Am. J. Phys. 27, 649 (1959) ADSCrossRefGoogle Scholar
  24. 24.
    U. Fano: Phys. Rev. 124, 1866 (1961) ADSCrossRefGoogle Scholar
  25. 25.
    R.B. Weisman, S.M. Bachilo: Nano Lett. 3, 1235 (2003) ADSCrossRefGoogle Scholar
  26. 26.
    M. Ichida, S. Mizuno, Y. Tani, Y. Saito, A. Nakamura: J. Phys. Soc. Jpn. 68, 3131 (1999) ADSCrossRefGoogle Scholar
  27. 27.
    X. Liu, T. Pichler, M. Knupfer, M.S. Golden, J. Fink, H. Kataura, Y. Achiba: Phys. Rev. B 66, 045 411 (2002) Google Scholar
  28. 28.
    C.L. Kane, E.J. Mele: Phys. Rev. Lett. 90, 207 401 (2003)Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • C.D. Spataru
    • 1
    • 2
  • S. Ismail-Beigi
    • 1
    • 2
  • L.X. Benedict
    • 3
  • S.G. Louie
    • 1
    • 2
  1. 1.Department of PhysicsUniversity of California at BerkeleyBerkeleyUSA
  2. 2.Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.H Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations