Advertisement

Applied Physics A

, Volume 78, Issue 6, pp 823–828 | Cite as

Adsorption of d-metal atoms on the regular MgO(001) surface: Density functional study of cluster models embedded in an elastic polarizable environment

  • K.M. NeymanEmail author
  • C. Inntam
  • V.A. Nasluzov
  • R. Kosarev
  • N. Rösch
Article

Abstract

Structure and bonding of complexes formed by 17 different single transition metal atoms (Cu, Ag, Au; Ni, Pd, Pt; Co, Rh, Ir; Fe, Ru, Os; Mn, Re; Cr, Mo, W) with oxygen sites of the regular MgO(001) surface were studied computationally. We employed an all-electron scalar-relativistic density functional method in combination with our novel scheme of cluster models embedded in an elastic polarizable environment that allows one to account for substrate relaxation. Even on a rigid substrate such as ideal MgO(001), adsorbate-induced relaxation noticeably affects structure and stability of surface complexes. For more reliable estimates, we calculated adsorption energies with two different gradient-corrected exchange-correlation functionals, BP86 and PBEN. More than one electron configuration was considered for metal atoms exhibiting high-spin states adsorption complexes. Within one group of the periodic table, 3d-atoms, in general, were found to adsorb more strongly than 4d-atoms, but weaker than 5d-atoms. In line with our previous studies of selected d-metal atoms adsorbed on oxides, the surface complexes considered did now show any indication of metal oxidation.

Keywords

Metal Atom Adsorption Energy Surface Complex Cluster Model State Adsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Schmid, M. Bäumle, M. Geerkens, I. Heim, C. Osemann, T. Sawitowski: Chem. Soc. Rev. 28, 179 (1999) CrossRefGoogle Scholar
  2. 2.
    C.R. Henry: Surf. Sci. Rep. 31, 231 (1998) ADSCrossRefGoogle Scholar
  3. 3.
    U. Heiz, W.D. Schneider: Crit. Rev. Solid State Mat. Sci. 26, 251 (2001) ADSCrossRefGoogle Scholar
  4. 4.
    G. Renaud: Surf. Sci. Rep. 32, 1 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    M. Bäumer, H.-J. Freund: Progr. Surf. Sci. 61, 127 (1999) ADSCrossRefGoogle Scholar
  6. 6.
    H.J. Freund: Surf. Sci. 500, 271 (2002) ADSCrossRefGoogle Scholar
  7. 7.
    Chemisorption and Reactivity on Supported Clusters and Thin Films, R.M. Lambert, G. Pacchioni (NATO ASI Series E, Vol. 331, Kluwer, Dordrecht 1997) Google Scholar
  8. 8.
    N. Rösch, V.A. Nasluzov, K.M. Neyman, G. Pacchioni, G.N. Vayssilov: In Computational Material Science, Theoretical and Computational Chemistry Series, J. Leszczynski (Elsevier, Amsterdam 2004) p. 84, in press Google Scholar
  9. 9.
    I. Yudanov, G. Pacchioni, K. Neyman, N. Rösch: J. Phys. Chem. B 101, 2786 (1997) CrossRefGoogle Scholar
  10. 10.
    A.D. Becke: Phys. Rev. A 38, 3098 (1988) ADSCrossRefGoogle Scholar
  11. 11.
    C. Lee, W. Yang, R.G. Parr: Phys. Rev. B 37, 785 (1988) ADSCrossRefGoogle Scholar
  12. 12.
    B. Miehlich, A. Savin, H. Stoll, H. Preuss: Chem. Phys. Lett. 157, 200 (1989) ADSCrossRefGoogle Scholar
  13. 13.
    A.V. Matveev, K.M. Neyman, I.V. Yudanov, N. Rösch: Surf. Sci. 426, 123 (1999) ADSCrossRefGoogle Scholar
  14. 14.
    V.A. Nasluzov, V.V. Rivanenkov, A.B. Gordienko, K.M. Neyman, U. Birkenheuer, N. Rösch: J. Chem. Phys. 115, 8157 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    N. López, F. Illas: J. Phys. Chem. B 102, 1430 (1998) CrossRefGoogle Scholar
  16. 16.
    N. López, F. Illas, N. Rösch, G. Pacchioni: J. Chem. Phys. 110, 4873 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    S. Abbet, E. Riedo, H. Brune, U. Heiz, A.M. Ferrari, L. Giordano, G. Pacchioni: J. Am. Chem. Soc. 123, 6172 (2001) CrossRefGoogle Scholar
  18. 18.
    N. López, J.C. Paniagua, F. Illas: J. Chem. Phys. 117, 9445 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    A. Markovits, M.K. Skalli, C. Minot, G. Pacchioni, N. López, F. Illas: J. Chem. Phys. 115, 8172 (2001) ADSCrossRefGoogle Scholar
  20. 20.
    V. Musolino, A. Selloni, R. Car: Surf. Sci. 402404, 413 (1998) Google Scholar
  21. 21.
    A. Bogicevic, D.R. Jennison: Surf. Sci. 515, L481 (2002) Google Scholar
  22. 22.
    I.V. Yudanov, V.A. Nasluzov, K.M. Neyman, N. Rösch: Int. J. Quantum Chem. 65, 975 (1997) CrossRefGoogle Scholar
  23. 23.
    K.M. Neyman, C. Inntam, V.A. Nasluzov, N. Rösch: unpublished Google Scholar
  24. 24.
    B. Dunlap, N. Rösch: Adv. Quantum Chem. 21, 317 (1990) ADSCrossRefGoogle Scholar
  25. 25.
    T. Belling, T. Grauschopf, S. Krüger, M. Mayer, F. Nörtemann, M. Staufer, C. Zenger, N. Rösch: In High Performance Scientific and Engineering Computing. Lec. Notes in Comput. Sci. Eng., Vol. 8, H.J. Bungartz, F. Durst, C. Zenger (Springer, Heidelberg 1999) p. 439 Google Scholar
  26. 26.
    T. Belling, T. Grauschopf, S. Krüger, F. Nörtemann, M. Staufer, M. Mayer, V.A. Nasluzov, U. Birkenheuer, A. Hu, A.V. Matveev, A.M. Shor, M.S.K. Fuchs-Rohr, K.M. Neyman, D.I. Ganyushin, T. Kerdcharoen, A. Woiterski, N. Rösch: ParaGauss, Version 2.2, Technische Universität München, 2001. Google Scholar
  27. 27.
    J.P. Perdew: Phys. Rev. B 33, 8822 (1986); Phys. Rev. B 34, 7406 (1986) ADSCrossRefGoogle Scholar
  28. 28.
    B. Hammer, L.B. Hansen, J.K. Nørskov: Phys. Rev. B 59, 7413 (1999) ADSCrossRefGoogle Scholar
  29. 29.
    N. Rösch, S. Krüger, M. Mayer, V.A. Naslusov: In Recent Developments and Applications of Modern Density Functional Theory, J. Seminario (Elsevier, Amsterdam 1996) p. 497 Google Scholar
  30. 30.
    N. Rösch, A. Matveev, V.A. Nasluzov, K.M. Neyman, L. Moskaleva, S. Krüger: Relativistic Electronic Structure Theory – Applications, Theoretical Comput. Chem. Series, P. Schwerdtfeger (Elsevier, Amsterdam 2004) p. 67, in press Google Scholar
  31. 31.
    D.R. Hamann: Phys. Rev. B 40, 2980 (1989) ADSCrossRefGoogle Scholar
  32. 32.
    C.R.A. Catlow, W.C. Mackrodt: In Computer Simulation of Solids Lect. Notes in Phys., Vol. 166, C.R.A. Catlow, W.C. Mackrodt (Springer, Berlin 1982) p. 3 Google Scholar
  33. 33.
    C.E. Moore: Atomic Energy Levels (Natl. Bur. Stand. U.S. Circ. No. 467, GPO, WA DC 1952) Google Scholar
  34. 34.
    R.G. Parr, W. Yang: Density Functional Theory for Atoms and Molecules (Oxford Uni., Oxford 1989) Google Scholar
  35. 35.
    G. Haas, A. Menck, H. Brune, J.V. Barth, J.A. Venables, K. Kern: Phys. Rev. B 61, 11105 (2000) ADSCrossRefGoogle Scholar
  36. 36.
    I.V. Yudanov, R. Sahnoun, K.M. Neyman, N. Rösch: J. Chem. Phys. 117, 9887 (2002) ADSCrossRefGoogle Scholar
  37. 37.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais: Phys. Rev. B 46, 6671 (1992) ADSCrossRefGoogle Scholar
  38. 38.
    V.V. Rivanenkov, V.A. Nasluzov, A.M. Shor, K.M. Neyman, N. Rösch: Surf. Sci. 525, 173 (2003) ADSCrossRefGoogle Scholar
  39. 39.
    L.E. Chirlian, M.M. Francl: J. Comp. Chem. 8, 894 (1987) CrossRefGoogle Scholar
  40. 40.
    As mentioned in Sect. 3, the adsorption energy for the complex Co/MgO was calculated with respect to the atomic energy of the DF ground state configuration d8s1 computed to be 0.63 eV more stable than the experimental ground state configuration d7s2. Using the latter experimental atomic configuration as reference would result in a binding energy of 1.85 eV for a Co adatom; this value is in the range of the binding energies for the “neighboring” Ni/MgO and Fe/MgO systems. See also the discussion elsewhere on the reliability of DF atomic references [18, 19]Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • K.M. Neyman
    • 1
    Email author
  • C. Inntam
    • 1
  • V.A. Nasluzov
    • 2
  • R. Kosarev
    • 1
  • N. Rösch
    • 1
  1. 1.Institut für Physikalische und Theoretische ChemieTechnische Universität MünchenGarchingGermany
  2. 2.Institute of Chemistry and Chemical TechnologyRussian Academy of SciencesKrasnoyarskRussia

Personalised recommendations