Advertisement

Applied Physics A

, Volume 78, Issue 7, pp 961–967 | Cite as

Storage of hydrogen on single-walled carbon nanotubes and other carbon structures

  • E. Poirier
  • R. Chahine
  • P. Bénard
  • D. Cossement
  • L. Lafi
  • E. Mélançon
  • T.K. Bose
  • S. Désilets
Article

Abstract

The sorption of hydrogen on carbon structures and nanostructures offers a way to reduce the storage pressure of hydrogen with respect to compression storage while achieving interesting gravimetric storage densities. The most readily available carbon structures, activated carbons, can achieve reproducible, high gravimetric storage densities under cryogenic operating conditions: 5–6% at 35 bar and 77 K, in excess of the normal density that would be present in the pore volume under compression at the same temperature and pressure. We discuss and compare the adsorption of hydrogen on high specific surface activated carbons, nanofibres and nanotubes from experimental and theoretical considerations. In particular, we present gravimetric and volumetric hydrogen sorption measurements on single-walled carbon nanotubes (SWNTs) at (1 bar, 77 K) and (1 bar, 295 K) within the context of our ongoing work on the storage of hydrogen on activated carbon and carbon nanostructures. BET surface area and XRD characterization results on SWNTs are also presented. The experiments were performed on as received, chemically treated and metal-incorporated SWNT samples. Hydrogen sorption capacities measured on treated samples ranged from ∼0 to about 1 wt. % at 1 bar and 295 K and reached about 4 wt. % at 1 bar and 77 K. Our results show that under certain conditions, SWNTs have better hydrogen uptake performance than large surface area activated carbons.

Keywords

Activate Carbon Pore Volume Sorption Capacity Carbon Structure Ongoing Work 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DOE Technical targets: On-board hydrogen storage systems, U.S. Department of Energy, http://www.eere.energy.gov/hydrogenandfuelcells/hydrogen/pdfs/technical_targets.pdf Google Scholar
  2. 2.
    R. Chahine, T.K. Bose: Int. J. Hydrogen Energy 19, 61 (1994) CrossRefGoogle Scholar
  3. 3.
    J.A. Schwartz: Final Report for the Tasks XC-1-1108-1 and XAE-3-13346-01, Nat. Renewable Energy Lab., Golden, CO (1994) Google Scholar
  4. 4.
    S. Hynek, W. Fuller, J. Bentley: Int. J. Hydrogen Energy 22, 601 (1997) CrossRefGoogle Scholar
  5. 5.
    P. Bénard, R. Chahine: Langmuir 17, 1950 (2001) CrossRefGoogle Scholar
  6. 6.
    G.L. Aranovitch, M.D. Donohue: Carbon 33, 1369 (1995) CrossRefGoogle Scholar
  7. 7.
    P. Bénard, R. Chahine: Langmuir 13, 808 (1997) CrossRefGoogle Scholar
  8. 8.
    P. Bénard, R. Chahine: Int. J. Hydrogen Energy 26, 849 (2001) CrossRefGoogle Scholar
  9. 9.
    A.C. Dillon, M.J. Heben: Appl. Phys. A 72, 133 (2001) ADSCrossRefGoogle Scholar
  10. 10.
    F.E. Pinkerton, B.G. Wicke, C.H. Olk, G.G. Tibbetts, G.P. Meisner, M.S. Meyer, J.F. Herbst: J. Phys. Chem. B 104, 9460 (2000) CrossRefGoogle Scholar
  11. 11.
    R.T. Yang: Carbon 38, 623 (2000) CrossRefGoogle Scholar
  12. 12.
    E. Poirier, R. Chahine, T.K. Bose: Int. J. Hydrogen Energy 26, 831 (2001) CrossRefGoogle Scholar
  13. 13.
    A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Klang, D.S. Bethune, M.J. Heben: Nature 386, 377 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    Ron Dagani: Chem. & Eng. News, 80, 25 (2002) Google Scholar
  15. 15.
    B. Simard, S. Dénommée, D. Ruth, J. Ripmeester, W-F. Du, R. Dutrisac, I. Moudrakowski, C. Ratcliffe, L. Wilson: 11th CHA Conf. Procs., Victoria, B.C. (2001) Google Scholar
  16. 16.
    A.C. Dillon, K.E.H. Gilbert, P.A. Parilla, J.L. Alleman, T. Gennett, L. Grigorian, K.M. Jones, M.J. Heben: 14th World Hydrogen Energy Conf., Montreal, QC, Canada, June 9-13 (2002) Google Scholar
  17. 17.
    M. Hirscher, M. Becher, M. Haluska, U. Dettlaff-Weglikowska, A. Quintel, G.S. Duesberg, Y.M. Choi, P. Downes, M. Hulman, S. Roth, I. Stepanek, P. Bernier: Appl. Phys. A 72, 129 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    A. Kuznetsova, D.B. Mawhinney, V. Naumenko, J.T. Yates Jr, J. Liu, R.E. Smalley: Chem. Phys. Lett. 321, 292 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    A.C. Dillon, K.E.H. Gilbert, J.L. Alleman, T. Gennett, K.M. Jones, P.A. Parilla, M.J. Heben: Proc. 2001 DOE Hydrogen Rev. Google Scholar
  20. 20.
    G. Stan, M.W. Cole : Surf. Sci. 395, 280 (1998) ADSCrossRefGoogle Scholar
  21. 21.
    E. Mélançon et al.: unpublished Google Scholar
  22. 22.
    E. Poirier et al.: unpublished Google Scholar
  23. 23.
    S. Ishiyama, K. Fukaya, M. Eto, N. Miya: J. Nucl. Sci. Tech. 37, 144 (2000) CrossRefGoogle Scholar
  24. 24.
    http://www.cnanotech.com Google Scholar
  25. 25.
    http://www.nanoledge.com Google Scholar
  26. 26.
    M. Hirscher, M. Becher, M. Haluska, F. von Zeppelin, X. Chen, U. Dettlaff-Weglikowska, S. Roth: J. Alloys Compd. 356357, 433–437 (2003) Google Scholar
  27. 27.
    M. Cinke, J. Li, B. Chen, A. Cassell, L. Delzeit, J. Han, M. Meyyappan: Chem. Phys. Lett. 365, 69 (2002) ADSCrossRefGoogle Scholar
  28. 28.
    L. Lafi, D. Cossement, R. Chahine: J. Phys. Chem. B, in pressGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • E. Poirier
    • 1
  • R. Chahine
    • 1
  • P. Bénard
    • 1
  • D. Cossement
    • 1
  • L. Lafi
    • 1
  • E. Mélançon
    • 1
  • T.K. Bose
    • 1
  • S. Désilets
    • 2
  1. 1.Institut de recherche sur l’hydrogèneUniversité du Québec à Trois-RivièresTrois-RivièresCanada
  2. 2.R & D pour la défense Canada – ValcartierVal-BélairCanada

Personalised recommendations