Applied Physics A

, Volume 80, Issue 5, pp 1071–1075 | Cite as

Effect of excess Bi2O3 on the electrical properties and microstructure of (Bi1/2Na1/2)TiO3 ceramics

  • X.X. Wang
  • X.G. Tang
  • K.W. Kwok
  • H.L.W. Chan
  • C.L. Choy
Article

Abstract

(Bi1/2Na1/2)TiO3 ceramics (BNT) with 0–6 mol % of excess Bi2O3 are prepared by conventional solid-state sintering. The electrical properties of the samples are examined. The addition of excess Bi2O3 reduces the leakage current of BNT ceramics significantly, thus facilitating the poling process, and improves their piezoelectric properties slightly for certain amounts of added Bi2O3. BNT ceramics have very high dielectric constants and dissipation factors at low frequency and high temperature due to their high conductivity. Adding excess Bi2O3 to BNT ceramics affects their dielectric behavior and phase transition temperatures. Grain growth is suppressed by adding Bi2O3 and no second phase is observed for BNT ceramics with up to 6 mol % of excess Bi2O3 added.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik: Sov. Phys. Solid State 2, 2651 (1961); English translationGoogle Scholar
  2. 2.
    J. Suchanicz, K. Roleder, A. Kania, J. Handerek: Ferroelectr. 77, 107 (1988)CrossRefGoogle Scholar
  3. 3.
    I.P. Pronin, P.P. Syrnikov, V.M. Egorov, N.V. Zaitseva, A.F. Ioffe: Ferroelectr. 25, 395 (1980)CrossRefGoogle Scholar
  4. 4.
    J.V. Zvirgzds, P.P. Kapostis, T.V. Kruzina: Ferroelectr. 40, 75 (1980)CrossRefGoogle Scholar
  5. 5.
    M.S. Hagiyev, I.H. Ismaizade, A.K. Abiyev: Ferroelectr. 56, 215 (1984)CrossRefGoogle Scholar
  6. 6.
    K. Sakata, Y. Masuda: Ferroelectr. 7, 347 (1974)ADSCrossRefGoogle Scholar
  7. 7.
    T. Takanaka: Ultrason. Technol. 8, 2 (2001); in JapaneseGoogle Scholar
  8. 8.
    T. Takenaka, K. Maruyama, K. Sakata: Jpn. J. Appl. Phys. 30, 2236 (1991)ADSCrossRefGoogle Scholar
  9. 9.
    T. Takenaka, T. Okuda, K. Takegahara: Ferroelectr. 196, 175 (1997)CrossRefGoogle Scholar
  10. 10.
    H. Nakada, N. Koizumi, T. Takenaka: Proc. 18th Meeting of the Electronics Division of the Ceramics Society of Japan, 1999, p. 37Google Scholar
  11. 11.
    T. Takenaka, H. Nagata: Jpn. J. Appl. Phys. 30, 2236 (1991)ADSCrossRefGoogle Scholar
  12. 12.
    A. Herabut, A. Safari: J. Am. Ceram. Soc. 80, 2954 (1997)CrossRefGoogle Scholar
  13. 13.
    X.X. Wang, H.L.W. Chan, C.L. Choy: J. Am. Ceram. Soc. (2003), in pressGoogle Scholar
  14. 14.
    Y.H. Xu: In Ferroelectric and Piezoelectric Materials (Science Publishers, Beijing 1978) p. 161Google Scholar
  15. 15.
    X.X. Wang, K. Murakami, O. Sugiyama, S. Kaneko: J. Eur. Ceram. Soc. 21, 1367 (2001)CrossRefGoogle Scholar
  16. 16.
    M. Onoe, H. Jumonji: J. Acoust. Soc. Am. 41, 974 (1967)ADSCrossRefGoogle Scholar
  17. 17.
    S. Said, J.P. Mercurio: J. Eur. Ceram. Soc. 21, 1333 (2001)CrossRefGoogle Scholar
  18. 18.
    V.H. Schmidt, C.-S. Tu, I.G. Siny: Proc. 9th IEEE Int. Symp. Appl. Ferroelectr., 1994, p. 45Google Scholar
  19. 19.
    G.A. Smolenskii: J. Phys. Soc. Jpn. 28, 26 (1970)Google Scholar
  20. 20.
    X.X. Wang, K.W. Kwok, X.G. Tang, H.L.W. Chan, C.L. Choy: J. Appl. Phys. (2003), submittedGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • X.X. Wang
    • 1
  • X.G. Tang
    • 1
  • K.W. Kwok
    • 1
  • H.L.W. Chan
    • 1
  • C.L. Choy
    • 1
  1. 1.Department of Applied Physics and Materials Research CenterThe Hong Kong Polytechnic UniversityHong KongChina

Personalised recommendations