Applied Physics A

, Volume 78, Issue 3, pp 263–268 | Cite as

Pulsed laser deposition: metal versus oxide ablation

Invited paper

Abstract

We present experimental results of pulsed laser interaction with metal (Ni, Fe, Nb) and oxide (TiO2, SrTiO3, BaTiO3) targets. The influence of the laser fluence and the number of laser pulses on the resulting target morphology are discussed. Although different responses for metal and oxide targets to repetitive laser irradiation could be expected due to the different band structures of metals and oxides, the optical response is quite similar for 248-nm laser irradiation. Therefore, the difference in response is largely caused by differences in thermal properties. Metal targets show periodic structures of the order of micrometers after consecutive pulses of laser radiation, while the SrTiO3 and BaTiO3 targets show a flat surface after ablation for relatively low fluences (1.0 J cm-2). The observed TiO2 target ablation characteristics fall in between those of the ablated metals and perovskites, because ablation results in the presence of Ti-rich material, which shields the underlying stoichiometric target material from ablation. The final target morphology is dependent on fluence, number of pulses, and the movement of the target itself (rotating, scanning, or stationary). It can take between 15 and 75 pulses to reach a steady-state target morphology on a stationary target.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.A.F. Span, F.J.G. Roesthuis, D.H.A. Blank, H. Rogalla: Appl. Surf. Sci. 150, 171 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    B. Dam, J.H. Rector, J. Johansson, S. Kars, R. Griessen: Appl. Surf. Sci. 9698, 679 (1996) Google Scholar
  3. 3.
    I.W. Boyd: Laser Processing of Thin Films and Microstructures (Springer, Berlin 1987) Google Scholar
  4. 4.
    P.R. Willmott, J.R. Huber: Rev. Mod. Phys. 72, 315 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    E.D. Palik: Handbook of Optical Constants of Solids (Academic, Orlando, FL 1985) Google Scholar
  6. 6.
    E.D. Palik: Handbook of Optical Constants of Solids II (Academic, San Diego, CA 1991) Google Scholar
  7. 7.
    M. von Allmen, A. Blatter: Laser-beam Interactions with Materials: Physical Principles and Applications (Springer, Berlin 1995) Google Scholar
  8. 8.
    R. Wood: Laser Damage in Optical Materials (IOP, Bristol 1990) Google Scholar
  9. 9.
    http://www.webelements.com/Google Scholar
  10. 10.
    G. Grimvall: Thermophysical Properties of Materials (Elsevier, Amsterdam 1999) Google Scholar
  11. 11.
    M.K. Karapet’yants, M.L. Karapet’yants: Thermodynamic Constants of Inorganic and Organic Compounds (Ann Arbor–Humphrey Science, London 1970) Google Scholar
  12. 12.
    D.R. Lide: CRC Handbook of Chemistry and Physics, Vol. 81 (CRC, Boca Raton, FL 2000) Google Scholar
  13. 13.
    F. Cardarelli, Materials Handbook (Springer, London 2000) Google Scholar
  14. 14.
    Y. Hiroshima, T. Ishiguro, I. Urata, H. Makita, H. Ohta, M. Tohogi, Y. Ichinose: J. Appl. Phys. 79, 3572 (1996) ADSCrossRefGoogle Scholar
  15. 15.
    E. Matthias, M. Reichling, J. Siegel, O.W. Käding, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske: Appl. Phys. A 58, 129 (1994) ADSCrossRefGoogle Scholar
  16. 16.
    B. Knacke: Thermochemical Properties of Inorganic Substances (Springer, Berlin 1973) Google Scholar
  17. 17.
    S. Fähler, H.-U. Krebs: Appl. Surf. Sci. 9698, 61 (1996) Google Scholar
  18. 18.
    R. Jordan, J.G. Lunney: Appl. Surf. Sci. 127129, 968 (1998) Google Scholar
  19. 19.
    H.-A. Durand, J.-H. Brimaud, O. Hellman, H. Shibata, S. Sakuragi, Y. Makita, D. Gesbert, P. Meyrueis: Appl. Surf. Sci. 86, 122 (1995) ADSCrossRefGoogle Scholar
  20. 20.
    J.F. Moulder, W.F. Stickle, P.E. Sobol, K.E. Bomben: Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Eden Prairie, MN 1992) Google Scholar
  21. 21.
    J.F. Young, J.S. Preston, H.M. van Driel, J.E. Sipe: Phys. Rev. B 27, 1155 (1983) ADSCrossRefGoogle Scholar
  22. 22.
    L.M. Doeswijk, H.H.C. de Moor, D.H.A. Blank, H. Rogalla: Appl. Phys. A 69, S409 (1999) Google Scholar
  23. 23.
    P. Milani, M. Manfredini: Appl. Phys. Lett. 68, 1769 (1996) ADSCrossRefGoogle Scholar
  24. 24.
    D.H. Lowndes, J.D. Fowlkes, A.J. Pedraza: Appl. Surf. Sci. 154155, 647 (2000) Google Scholar
  25. 25.
    J.F. Young, J.E. Sipe, H.M. Driel: Phys. Rev. B 30, 2001 (1984) ADSCrossRefGoogle Scholar
  26. 26.
    J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel: Phys. Rev. B 27, 1141 (1983) ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    E. György, I.N. Mihailescu, P. Serra, A. Pérez del Pino, J.L. Morenza: Surf. Coat. Technol. 154, 63 (2002) CrossRefGoogle Scholar
  28. 28.
    S.E. Clark, D.C. Emmony: Phys. Rev. B 40, 2031 (1989) ADSCrossRefGoogle Scholar
  29. 29.
    E.A.F. Span: Oxygen-permeable Perovskite Thin-film Membranes by Pulsed Laser Deposition. Ph.D. thesis, University of Twente, The Netherlands (2001)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Mesa+ Research Institute, Faculty of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations