Applied Physics A

, Volume 78, Issue 2, pp 247–252 | Cite as

Time-resolved two-photon photoemission spectroscopy of semiconductor bulk states

  • S. RamakrishnaEmail author
  • F. Willig
  • A. Knorr


Time-resolved two-photon photoemission spectra (2PPE) are modeled using the Heisenberg equations of motion, wherein electron relaxation (thermalization) is treated phenomenologically. Energy dispersion is incorporated for initial, intermediate, and final states in the model calculations. The question of whether time-resolved 2PPE spectra can help to determine the electron distribution in intermediate states (such as conduction band states), and thereby enable the extraction of their temperature, is the focus of this work. By exploring different types of energy dispersion for the final states and by varying the pump and probe energies, the study indicates that 2PPE spectra provide qualitative insight into the process of hot-electron thermalization and cooling, but do not directly yield quantitative information, such as the actual distribution or temperature.


Model Calculation Conduction Band Intermediate State Energy Dispersion Quantitative Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Shudo, T. Munakata: Phys. Rev. B 63, 125324 (2001); K. Shudo, S. Takeda, T. Munakata: Phys. Rev. B 65, 075302 (2002) CrossRefGoogle Scholar
  2. 2.
    C. Kentsch, M. Kutshera, M. Weinelt, T. Fauster, M. Rohlfing: Phys. Rev. B 65, 035323 (2001) CrossRefGoogle Scholar
  3. 3.
    T. Hertel, E. Knoesel, M. Wolf, G. Ertl: Phys. Rev. Lett. 76, 535 (1996) CrossRefGoogle Scholar
  4. 4.
    E. Knoesel, A. Hotzel, M. Wolf: Phys. Rev. B 57, 12812 (1998) CrossRefGoogle Scholar
  5. 5.
    U. Höfer, I.L. Shumay, C. Reuss, U. Thormann, W. Wallauer, T. Fauster: Science 277, 1480 (1997) CrossRefGoogle Scholar
  6. 6.
    C.B. Harris, N.-H. Ge, R.L. Lingle, Jr., J.D. McNeill, C.M. Wong: Annu. Rev. Phys. Chem. 48, 711 (1997) CrossRefGoogle Scholar
  7. 7.
    H. Petek, S. Ogawa: Prog. Surf. Sci. 59, 239 (1998) Google Scholar
  8. 8.
    C. Gahl, K. Ishioka, Q. Zhong, A. Hotzel, M. Wolf: Faraday Discuss. 117, 191 (2001) CrossRefGoogle Scholar
  9. 9.
    R. Haight: Surf. Sci. Rep. 21, 275 (1995) CrossRefGoogle Scholar
  10. 10.
    A. Rettenberger, R. Haight: Phys. Rev. Lett. 76, 1912 (1996); Surf. Sci. 414, 197 (1998) CrossRefGoogle Scholar
  11. 11.
    S. Jeong, H. Zacharias, J. Bokor: Phys. Rev. B 54, R17300 (1996) Google Scholar
  12. 12.
    W.S. Fann, R. Storz, H.W.K. Tom, J. Bokor: Phys. Rev. Lett. 68, 2834 (1992); Phys. Rev. B 46, 13592 (1992) CrossRefGoogle Scholar
  13. 13.
    S. Jeong, J. Bokor: Phys. Rev. B 59, 4943 (1999) CrossRefGoogle Scholar
  14. 14.
    J.R. Goldman, J.A. Prybyla: Phys. Rev. Lett. 72, 1364 (1994) CrossRefGoogle Scholar
  15. 15.
    C.A. Schmuttenmaer, C. Cameron Miller, J.W. Herman, J. Cao, D.A. Mantell, Y. Gao, R.J.D. Miller: Chem. Phys. 205, 91 (1996) CrossRefGoogle Scholar
  16. 16.
    S. Jorgenson, M. Ratner, K.V. Mikkelsen: J. Chem. Phys. 115, 4314 (2001) CrossRefGoogle Scholar
  17. 17.
    K. Boger, M. Roth, M. Weinelt, T. Fauster, P.-G. Reinhard: Phys. Rev. B 65, 075104 (2002) CrossRefGoogle Scholar
  18. 18.
    H. Ueba: Surf. Sci. 334, L719 (1995) Google Scholar
  19. 19.
    R. Binder, D. Scott, A.E. Paul, M. Lindberg, K. Henneberger, S.W. Koch: Phys. Rev. B 45, 1107 (1992) CrossRefGoogle Scholar
  20. 20.
    A.M. Frisch, P. Vogt, S. Visbeck, T. Hannappel, F. Willig, W. Braun, W. Richter, J. Bernholc, W.G. Schmidt, N. Esser: Appl. Surf. Sci. 166, 224 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Hahn-Meitner-InstitutBerlinGermany
  2. 2.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations