Applied Physics A

, Volume 78, Issue 2, pp 155–159 | Cite as

Scattering of image-potential-state electrons by steps on Cu(001)

  • M. RothEmail author
  • M. Weinelt
  • T. Fauster
  • P. Wahl
  • M.A. Schneider
  • L. Diekhöner
  • K. Kern


Scanning tunneling spectroscopy (STS) reveals a distinct asymmetry in the scattering properties of an isolated step for the n=1 image-potential state on Cu(001). The elastic scattering probability for an electron traveling downstairs is determined from the strength of density oscillations in front of a step edge and is found to be approximately two times higher than for the opposite upstairs direction. A one-dimensional scattering model is extended to the case of asymmetric transmission and reflection coefficients. The calculations using the asymmetry measured by STS explain the dispersion and the decay rate of the n=1 band on Cu(119) measured by two-photon photoemission. In particular, the asymmetry of the decay rate can be described quantitatively with a minimum of adjustable parameters. While the results can also be transferred successfully to the Cu(1115) surface, the limit of applicability is reached for Cu(117) with a step separation of 3.5 nearest-neighbor distances.


Spectroscopy Reflection Decay Rate Reflection Coefficient Adjustable Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.M. Echenique, J.B. Pendry: J. Phys. C: Solid State Phys. 11, 2065 (1978) CrossRefGoogle Scholar
  2. 2.
    T. Fauster, W. Steinmann: In Photonic Probes of Surfaces, Vol. 2 of Electromagnetic Waves: Recent Developments in Research, ed. by P. Halevi (North-Holland, Amsterdam 1995) Chapt. 8, p. 347 Google Scholar
  3. 3.
    R.M. Osgood, X.Y. Wang: In Solid State Physics, Vol. 51, ed. by H. Ehrenreich, F. Spaepen (Academic, San Diego 1997)p. 1 Google Scholar
  4. 4.
    P.M. Echenique, J.M. Pitarke, E.V. Chulkov, V.M. Silkin: J. Electron Spectrosc. Relat. Phenom. 126, 163 (2002) CrossRefGoogle Scholar
  5. 5.
    T. Fauster, Ch. Reuss, I.L. Shumay, M. Weinelt: Chem. Phys. 251, 111 (2000) CrossRefGoogle Scholar
  6. 6.
    K. Boger, M. Weinelt, T. Fauster: Appl. Phys. A, DOI: 10.1007/s00339-003-2312-4 Google Scholar
  7. 7.
    M. Roth, M. Pickel, J. Wang, M. Weinelt, T. Fauster: Appl. Phys. B 74, 661 (2002) Google Scholar
  8. 8.
    M. Roth, M. Pickel, J. Wang, M. Weinelt, T. Fauster: Phys. Rev. Lett. 88, 096802 (2002) CrossRefGoogle Scholar
  9. 9.
    M. Weinelt: J. Phys.: Condens. Matter 14, R1099 (2002) Google Scholar
  10. 10.
    M.F. Crommie, C.P. Lutz, D.M. Eigler: Science 262, 218 (1993) Google Scholar
  11. 11.
    J. Li, W.-D. Schneider, R. Berndt, O.R. Bryant, S. Crampin: Phys. Rev. Lett. 81, 4464 (1998) CrossRefGoogle Scholar
  12. 12.
    L. Bürgi, O. Jeandupeux, A. Hirstein, H. Brune, K. Kern: Phys. Rev. Lett. 81, 5370 (1998) CrossRefGoogle Scholar
  13. 13.
    L. Bürgi, O. Jeandupeux, H. Brune, K. Kern: Phys. Rev. Lett. 82, 4516 (1999) CrossRefGoogle Scholar
  14. 14.
    J. Kliewer, R. Berndt, E.V. Chulkov, V.M. Silkin, P.M. Echenique, S. Crampin: Science 288, 1399 (2000) CrossRefGoogle Scholar
  15. 15.
    L. Vitali, P. Wahl, M.A. Schneider, K. Kern, V.M. Silkin, E.V. Chulkov, P.M. Echenique: Surf. Sci. 523, L47 (2003) Google Scholar
  16. 16.
    M.A. Schneider, L. Vitali, N. Knorr, K. Kern: Phys. Rev. B 65, 121406 (2002) CrossRefGoogle Scholar
  17. 17.
    P. Wahl, M.A. Schneider, L. Diekhöner, R. Vogelgesang, K. Kern: Phys. Rev. Lett. 91, 106802 (2003) CrossRefGoogle Scholar
  18. 18.
    G. Binnig, K.H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, A.R. Williams: Phys. Rev. Lett. 55, 991 (1985) CrossRefGoogle Scholar
  19. 19.
    L. Bartels, S.W. Hla, A. Kühnle, G. Meyert, K.-H. Rieder, J.R. Manson: Phys. Rev. B 67, 205416 (2003) CrossRefGoogle Scholar
  20. 20.
    W. Berthold, U. Höfer, P. Feulner, E.V. Chulkov, V.M. Silkin, P.M. Echenique: Phys. Rev. Lett. 88, 056805 (2002) CrossRefGoogle Scholar
  21. 21.
    M. Roth, M. Pickel, M. Weinelt, T. Fauster: Appl. Phys. A, DOI: 10.1007/s00339-003-2311-5 Google Scholar
  22. 22.
    N.W. Ashcroft, N.D. Mermin: Solid State Physics (Saunders College, Philadelphia 1976) Chapt. 8, Problem 1 Google Scholar
  23. 23.
    J.B. Pendry: Low Energy Electron Diffraction (Academic, London 1974) Chapt. IIIB Google Scholar
  24. 24.
    T. Fauster: Appl. Phys. A 59, 639 (1994) Google Scholar
  25. 25.
    G. Hörmandinger, J.B. Pendry: Phys. Rev. B 50, 18607 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Roth
    • 1
    Email author
  • M. Weinelt
    • 1
  • T. Fauster
    • 1
  • P. Wahl
    • 2
  • M.A. Schneider
    • 2
  • L. Diekhöner
    • 2
  • K. Kern
    • 2
  1. 1.Lehrstuhl für FestkörperphysikUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Max-Planck-Institut für FestkörperforschungStuttgartGermany

Personalised recommendations