Applied Physics A

, Volume 78, Issue 1, pp 15–19 | Cite as

Creation of novel ZnO nanostructures: self-assembled nanoribbon/nanoneedle junction networks and faceted nanoneedles on hexagonal microcrystals

Rapid communication

Abstract

ZnO nanoribbon/nanoneedle junction networks and faceted nanoneedle–microwhisker structures were grown for the first time by the evaporation of ZnS in the presence of oxygen under different reaction conditions. The nanoribbons/nanoneedles crossed each other in three specific directions to form network-like 2D junction structures and displayed a unique and perfect growth mode. For the faceted nanoneedle structure, the nanoneedle grew epitaxially on the (0002) plane of a ZnO microcrystal. These ZnO nanostructures might have potential applications in the development of nanoscale electronics and optics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hu, T. Odom, C.M. Leiber: Acc. Chem. Res. 32, 435 (1999) CrossRefGoogle Scholar
  2. 2.
    H. Dai, J.H. Hafner, A.G. Rinzler, D.T. Cobert, R.E. Smalley: Nature (London) 384, 147 (1996) ADSCrossRefGoogle Scholar
  3. 3.
    C.M. Leiber: Solid State Commun. 107, 607 (1998) ADSCrossRefGoogle Scholar
  4. 4.
    M. Morales, C.M. Lieber: Science 279, 208 (1998) ADSCrossRefGoogle Scholar
  5. 5.
    W. Shi, H. Peng, N. Wang, C.P. Li, L. Xu, C.S. Lee, R. Kalish, S.-T. Lee: J. Am. Chem. Soc. 123, 11095 (2001) CrossRefGoogle Scholar
  6. 6.
    J. Sha, J. Niu, X. Ma, J. Xu, X. Zhang, Q. Yang, D. Yang: Adv. Mater. 14, 1219 (2002) CrossRefGoogle Scholar
  7. 7.
    X. Duan, C.M. Lieber: J. Am. Chem. Soc. 122, 188 (2000) CrossRefGoogle Scholar
  8. 8.
    M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, K. Hiruma: Appl. Phys. Lett. 61, 2051 (1992) ADSCrossRefGoogle Scholar
  9. 9.
    X. Duan, C.M. Lieber: Adv. Mater. 12, 298 (2000) CrossRefGoogle Scholar
  10. 10.
    S.Y. Bae, H.W. Seo, J. Park, H. Yang, J.C. Park, S.Y. Lee: Appl. Phys. Lett. 81, 126 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    X. Wang, P. Gao, J. Li, C.J. Summers, Z.L. Wang: Adv. Mater. 14, 732 (2002) CrossRefGoogle Scholar
  12. 12.
    Y.Q. Zhu, W.K. Hsu, N. Grobert, H. Terrones, J.P. Hare, H.W. Kroto, D.R.M. Walton: J. Mater. Chem. 8, 1859 (1998) CrossRefGoogle Scholar
  13. 13.
    Y.Q. Zhu, W.K. Hsu, W.Z. Zhou, M. Terrones, H.W. Kroto, D.R.M. Walton: Chem. Phys. Lett. 347, 337 (2001) ADSCrossRefGoogle Scholar
  14. 14.
    G. Lu, W. Li, J. Yao, G. Zhang, B. Yang, J. Shen: Adv. Mater. 14, 1049 (2002) CrossRefGoogle Scholar
  15. 15.
    M.H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang: Adv. Mater. 13, 113 (2001)ADSCrossRefGoogle Scholar
  16. 16.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang: Science 292, 1897 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    Z.W. Pan, Z.R. Dai, Z.L. Wang: Science 291, 1947 (2001) ADSCrossRefGoogle Scholar
  18. 18.
    J.-J. Wu, S.-C. Liu: Adv. Mater. 14, 215 (2002) CrossRefGoogle Scholar
  19. 19.
    J.-J. Wu, S.-C. Liu, C.T. Wu, K.-H. Chen, L.-C. Chen: Appl. Phys. Lett. 81, 1312 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    J. Zhang, L. Sun, C. Liao, C. Yan: Chem. Commun. 3, 262 (2002) CrossRefGoogle Scholar
  21. 21.
    J.Y. Lao, J.Y. Huang, D.Z. Wang, Z.F. Ren: Nano Lett. 2, 1287 (2002) ADSCrossRefGoogle Scholar
  22. 22.
    W.I. Park, G.-C. Yi, M. Kim, S.J. Pennycook: Adv. Mater. 14, 1481 (2002) Google Scholar
  23. 23.
    P. Yang, C.M. Lieber, J. Mater. Res. 12, 2981 (1997) Google Scholar
  24. 24.
    W.J. Li, E.-W. Shi, W.-Z. Zhong, Z.W. Yin: J. Cryst. Growth 203, 186 (1999)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • P.-A. Hu
    • 1
  • Y.-Q. Liu
    • 1
  • L. Fu
    • 1
  • X.-B. Wang
    • 1
  • D.-B. Zhu
    • 1
  1. 1.Center for Molecular Science, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations