Applied Physics A

, Volume 78, Issue 5, pp 651–654 | Cite as

Ion beam assisted smoothing of optical surfaces

  • F. Frost
  • R. Fechner
  • D. Flamm
  • B. Ziberi
  • W. Frank
  • A. Schindler
Article

Abstract

In this work different ion-beam techniques demonstrate their capability for surface-roughness reduction down to the sub-nanometer scale. In ion beam direct smoothing, favorable characteristics in the development of surface topography are exploited and smoothing with the help of planarization layers is evaluated. Focusing on the common optical substrate materials quartz (fused silica) and silicon, it is shown that a surface-roughness reduction down to the ∼0.1 nm root mean square level can be achieved by optimization and combination of these techniques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.F. Johnson, K.A. Ingersoll: Appl. Opt. 22, 1165 (1983) Google Scholar
  2. 2.
    R. Fechner, A. Schindler, T. Hänsel, F. Bigl: Precision Science and Technology for Perfect Surfaces, ed. by Y. Furukawa, Y. Mori, T. Kataoka (The Japan Society for Precision Engineering, Tokyo 1999) p. 249 Google Scholar
  3. 3.
    M. Wissing, M. Batzill, K.J. Snowdon: Nanotechnology 8, 40 (1997) CrossRefGoogle Scholar
  4. 4.
    K. Kimura, A. Fukui, K. Nakajima, M.H. Mannami: Nucl. Instrum. Methods B 148, 149 (1999) CrossRefGoogle Scholar
  5. 5.
    L.P. Allen, D.B. Fenner, V. DiFilippo, C. Santeufemio, E. Degenkolb, W. Brooks, M. Mack, J. Hautala: J. Electron. Mater. 30, 829 (2001) Google Scholar
  6. 6.
    D.B. Fenner, V. DiFilippo, J.A. Bennett, T.G. Tetreault, J.K. Hirvonen, L.C. Feldman: Proc. SPIE 4468, 17 (2001) CrossRefGoogle Scholar
  7. 7.
    F. Frost, A. Schindler, F. Bigl: Appl. Phys. A 66, 663 (1998) CrossRefGoogle Scholar
  8. 8.
    F. Frost, G. Lippold, K. Otte, D. Hirsch, A. Schindler, F. Bigl: J. Vac. Sci. Technol. A 17, 793 (1999) CrossRefGoogle Scholar
  9. 9.
    A. Hirata, H. Tokura, M. Yoshikawa: Thin Solid Films 212, 43 (1992) CrossRefGoogle Scholar
  10. 10.
    S. Kiyohara, I. Miyamoto, T. Masaki, S. Honda: Nucl. Instrum. Methods B 121, 191 (1997) CrossRefGoogle Scholar
  11. 11.
    M. Zeuner, J. Meichsner, H. Neumann, F. Scholze, F. Bigl: J. Appl. Phys. 80, 611 (1996) Google Scholar
  12. 12.
    M. Tartz, E. Hartmann, F. Scholze, H. Neumann: Rev. Sci. Instrum. 69, 1147 (1998) Google Scholar
  13. 13.
    F. Frost, D. Hirsch, A. Schindler: Appl. Surf. Sci. 179, 8 (2001) CrossRefGoogle Scholar
  14. 14.
    F. Frost, D. Hirsch, A. Schindler, B. Rauschenbach: Proc. SPIE 4449, 225 (2001) CrossRefGoogle Scholar
  15. 15.
    D. Flamm, F. Frost, D. Hirsch: Appl. Surf. Sci. 179, 95 (2001) CrossRefGoogle Scholar
  16. 16.
    F. Frost, D. Flamm: submitted Google Scholar
  17. 17.
    Y.-P. Zhao, J.T. Drotar, G.-C. Wang, T.-M. Lu: Phys. Rev. Lett. 82, 4882 (1999) CrossRefGoogle Scholar
  18. 18.
    J.T. Drotar, Y.-P. Zhao, T.-M. Lu, G.-C. Wang: Phys. Rev. B 61, 3012 (2000) CrossRefGoogle Scholar
  19. 19.
    E. Chason, T.M. Mayer, B.K. Kellerman, D.T. McIlroy, A.J. Howard: Phys. Rev. Lett. 72, 3040 (1994) CrossRefGoogle Scholar
  20. 20.
    For further description and details of the planarization technique, the reader is referred to [2]Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • F. Frost
    • 1
  • R. Fechner
    • 1
  • D. Flamm
    • 1
  • B. Ziberi
    • 1
  • W. Frank
    • 1
  • A. Schindler
    • 1
  1. 1.Leibniz-Institut für OberflächenmodifizierungLeipzigGermany

Personalised recommendations