Advertisement

Applied Physics A

, Volume 80, Issue 2, pp 377–380 | Cite as

Multiple-walled BN nanotubes obtained with a mechanical alloying technique

  • G. Rosas
  • J. Sistos
  • J.A. AscencioEmail author
  • A. Medina
  • R. Perez
Article

Abstract

An experimental method to obtain multiple-walled nanotubes of BN using low energy is presented. The method is based on the use of mechanical alloying techniques with elemental boron powders and nitrogen gas mixed in an autoclave at room temperature. The chemical and structural characteristics of the multiple-walled nanotubes were obtained using different techniques, such as X-ray diffraction, transmission electron microscopy, EELS microanalysis, high-resolution electron microscopy images and theoretical simulations based on the multisliced approach of the electron diffraction theory. This investigation clearly illustrates the production of multiple-wall BN nanotubes at room temperature. These results open up a new kind of synthesis method with low expense and important perspectives for use in large-quantity production.

Keywords

Transmission Electron Microscopy Boron Expense Electron Diffraction Microscopy Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ijima: Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    Y. Feldman, E. Wasserman, D. Srolovitz, R. Tene: Science 267, 222 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Z. Weng-Sieh, K. Cherrey, N.G. Chopra, X. Blasé, Y. Miyamoto, A. Rubio, M.L. Cohen, S.G. Louie, A. Zettl, R. Gronsky: Phys. Rev. B 51, 11229 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    N.G. Chopra, R.J. Luyken, K. Cherrey, V.H. Crespi, M.L. Cohen, S.G. Louie, A. Zettl: Science 269, 966 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    D. Golberg, Y. Bando, M. Emerets, K. Takemura, H. Yusa: Appl. Phys. 69, 2045 (1996)ADSGoogle Scholar
  6. 6.
    E.J.M. Hamilton, S.E. Dolan, C.M. Mann, H.O. Colijin, C.A. McDonald, S.G. Shore: Science 260, 659 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Cheng, L.T. Chadderton, J.F. Gerarld, J.S. Williams: Appl. Phys. Lett. 74, 2960 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Cheng, J.F. Gerarld, P. Willis, J.S. Williams: J. Metastable Nanocryst. Mater. 2, 173 (1999)CrossRefGoogle Scholar
  9. 9.
    A. Loiseau, F. Willaime, N. Demoncy, G. Hug, H. Pascard: Phys. Rev. Lett. 76, 4737 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Cheng, J. Gerarld, S. Bulcock, J. Williams: Chem. Phys. Lett. 299, 260 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    J.A. Ascencio, C. Gutiérrez-Wing, M.E. Espinosa-Pesqueira, M. Marín, S. Tehuacanero, C. Zorrilla, M. José-Yacamán: Surf. Sci. 396, 349 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    R.R. Chianelli, G. Berhault, P. Santiago, D. Mendoza, A. Espinosa, J.A. Ascencio, M. José Yacamán: Mat. Tech. Incorp. Adv. Perf. Mat. 15, 54 (2000)Google Scholar
  13. 13.
    J.A. Ascencio, M. Perez-Alvarez, L.M. Molina, P. Santiago, M. José-Yacaman: Surf. Sci. 526, 243 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • G. Rosas
    • 1
  • J. Sistos
    • 1
  • J.A. Ascencio
    • 2
    Email author
  • A. Medina
    • 2
  • R. Perez
    • 2
  1. 1.Instituto de Investigaciones MetalúrgicasUniversidad Michoacana de San Nicolas de HidalgoMichMexico
  2. 2.Programa de Investigación y Desarrollo de DuctosInstituto Mexicano del Petróleo Eje Central Lázaro Cárdenas 152AtepehuacanMexico

Personalised recommendations