Applied Physics A

, Volume 78, Issue 1, pp 67–72 | Cite as

Visualization of field induced ferroelectric electron emission from TGS using emission electron microscopy

Article

Abstract

Field induced electron emission from triglycinesulfate (TGS) has been investigated using parallel imaging electron emission microscopy (EEM). The emission phenomenon has been induced by applying an ac electrical field up to 2 kV/mm to a single crystal of approximately 0.1 mm thickness. Emission patterns have been observed as a function of the applied field amplitude and of the crystal temperature. At voltages below the coercive field, no emission is visible. When approaching the Curie temperature, emission gradually disappears. This indicates an electron emission mechanism relying on the existence of a switchable ferroelectric phase. The information content of the images is discussed, an interpretation is given on the basis of existing theories.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Gundel: Electron emission from a ferroelectric surface: A new generation of pulsed electron beam sources. In J. Le Duff (Ed.), Bendor Workshop on ‘Short Pulse High Current Cathodes’, pages 305–321, Bendor, Germany, 1990. Edition Frontières 1990,ISBN 2-86332-092-0 Google Scholar
  2. 2.
    H. Gundel, H. Riege, E.J.N. Wilson, J. Handerek, K. Zioutas: The use of ferroelectrics for acceleration of charged particles. In Proc. XIIIth International Symposium on Discharges and Electrical Insulation in Vacuum, volume 25 (4), page 655, Paris, France, 1990. IEEE Trans. Electrical Insulation Google Scholar
  3. 3.
    H. Gundel: Electron emission by nanosecond switching in plzt. In Proceedings of the Third International Symposium on Integrated Ferroelectrics, pages 501–514, Colorado Springs, 1991. University of Colorado Press Google Scholar
  4. 4.
    K. Geissler, H. Gundel, H. Riege, J. Handerek: Appl. Phys. Lett. 56, 895, (1990) ADSCrossRefGoogle Scholar
  5. 5.
    K. Geissler, J. Handerek, A. Meineke, H. Riege, K. Schmidt: Phys. Lett. A 176, 387, (1993) ADSCrossRefGoogle Scholar
  6. 6.
    H. Gundel, J. Handerek, H. Riege: J. Appl. Phys. 69, 975, (1991) ADSCrossRefGoogle Scholar
  7. 7.
    G. Rosenman, I. Rez: J. Appl. Phys. 73, 1904, (1993) ADSCrossRefGoogle Scholar
  8. 8.
    J. D. Ivers, L. Schächter, J. A. Nation, G. S. Kerslick, R. Advani : J. Appl. Phys. 73, 2667, (1993) ADSCrossRefGoogle Scholar
  9. 9.
    H. Riege, I. Boscolo, J. Handerek, U. Herleb: J. Appl. Phys. 84, 1602, (1998) ADSCrossRefGoogle Scholar
  10. 10.
    H. Gundel: Integrated Ferroelectrics 9, 115, (1995) CrossRefGoogle Scholar
  11. 11.
    H. Gundel: Ferroelectrics 184, 89, (1996) CrossRefGoogle Scholar
  12. 12.
    G. Rosenman, D. Shur, A. Skliar: J. Appl. Phys. 79, 7401, (1996) ADSCrossRefGoogle Scholar
  13. 13.
    K. Biedrzycki: Ferroelectrics 192, 269, (1997) CrossRefGoogle Scholar
  14. 14.
    O. Auciello, M. A. Ray, D. Palmer, J. Duarte, G. E. McGuire, D. Temple: Appl. Phys. Lett. 66, 2183, (1995) ADSCrossRefGoogle Scholar
  15. 15.
    D. Averty, J.L. Chartier, H.W. Gundel, R. Le Bihan: Integrated Ferroelectrics 18, 91, (1997) CrossRefGoogle Scholar
  16. 16.
    E. Sviridov, R. Le Bihan, S.F. Liateni, A. Désécures: Appl. Phys. Lett. 73, 3953, (1998) ADSCrossRefGoogle Scholar
  17. 17.
    R. Seveno, P. Limousin, D. Averty, J.L. Chartier, R. Le Bihan, H.W. Gundel: J. Eur. Ceram. Soc. 20, 2025, (2000) CrossRefGoogle Scholar
  18. 18.
    H. Gundel, A. Meineke: Ferroelectrics 146, 29, (1993) CrossRefGoogle Scholar
  19. 19.
    H. Gundel: Integrated Ferroelectrics 5, 211, (1994) CrossRefGoogle Scholar
  20. 20.
    G.I. Rosenman, O.V. Malyshkina, Y.L. Chepelev: Ferroelectrics 110, 99, (1990) CrossRefGoogle Scholar
  21. 21.
    J. Chmelik, L. Veneklasen, G.K.L. Marx: Optik 83, 155, (1989) Google Scholar
  22. 22.
    C. Ziethen, O. Schmidt, G.H. Fecher, C.M. Schneider, G. Schönhense, R. Frömter, M. Seider, K. Grzelakowski, M. Merkel, D. Funnemann, W. Swiech, H. Gundlach, J. Kirschner: J. Electron. Spectrosc. Relat. Phenom. 88, 983, (1998) CrossRefGoogle Scholar
  23. 23.
    G. Schönhense: J. Phys.: Cond. Matt. 11, 9517, (1999) ADSGoogle Scholar
  24. 24.
    H. Gundel, H. Riege, E.J.N. Wilson, J. Handerek, K. Zioutas: Ferroelectrics 94, 337, (1989) CrossRefGoogle Scholar
  25. 25.
    D. Averty, H. Gundel, R. Seveno, R.Le. Bihan: In Proceedings of the ISIF, 1998 Google Scholar
  26. 26.
    G. Benedek, I. Boscolo, J. Handerek, H. Riege: J. Appl. Phys. 81, 1396, (1997) ADSCrossRefGoogle Scholar
  27. 27.
    H.W. Gundel: Electron Emission from Ferroelectrics: A New Generation of Pulsed Electron Beam Sources PhD thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen-Nürnberg, Germany, 1996. (english), Shaker Verlag Aachen, ISBN 3-8265-1403-3, ISSN 0945-0963 Google Scholar
  28. 28.
    W. Zhang, W. Huebner, G.D. Waddill: Ferroelectrics 215, 75, (1998) CrossRefGoogle Scholar
  29. 29.
    K. Biedrzycki, L. Markowski, Z. Czapla: Phys. Status Solidi A 165, 283, (1998) ADSCrossRefGoogle Scholar
  30. 30.
    K. Biedrzycki, L. Markowski: Ferroelectrics 172, 405, (1995) CrossRefGoogle Scholar
  31. 31.
    G. Rosenman: Ferroelectrics 141, 95, (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Klais
    • 1
  • D. Averty
    • 2
  • H.W. Gundel
    • 2
  • G. Schönhense
    • 1
  1. 1.Institut f. PhysikJohannes Gutenberg-Universität MainzMainzGermany
  2. 2.Laboratoire de Physique des Isolants et d’OptroniqueUniversité de NantesNantesFrance

Personalised recommendations