Applied Physics A

, Volume 77, Issue 6, pp 731–734

Contact improvement of carbon nanotubes via electroless nickel deposition

  • M. Liebau
  • E. Unger
  • G.S. Duesberg
  • A.P. Graham
  • R. Seidel
  • F. Kreupl
  • W. Hoenlein
Rapid communication

Abstract

Individual multi-walled carbon nanotubes (CNTs) were deposited onto microelectrodes and embedded in nickel to achieve low-ohmic contact resistances. Electroless deposition of nickel onto gold/iron, palladium, and cobalt microelectrodes was used to form electrically stable bonds at the interfaces between the electrodes and CNTs. Resistance measurements showed that the contact resistances of the CNTs on gold/iron and palladium were significantly improved by nickel embedding, whereas no further improvement was found for the CNTs on cobalt. Electroless metal deposition is a parallel process providing stable electrical and mechanical contacts between CNTs and metallic microelectrodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. Collins, P. Avouris: Sci. Am. 12, 62(2000) Google Scholar
  2. 2.
    H. Dai, E.W. Wong, C.M. Lieber: Science 272, 523 (1996) Google Scholar
  3. 3.
    A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Science 294, 1317 (2001) Google Scholar
  4. 4.
    S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Science 280, 1744 (1998) Google Scholar
  5. 5.
    S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker: Nature 386, 474 (1997) Google Scholar
  6. 6.
    H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassell, S. Fan, M. Chapline: J. Phys. Chem. B 103, 11246 (1999) Google Scholar
  7. 7.
    P.A. Williams, S.J. Papadakis, M.R. Falvo, A.M. Patel, M. Sinclair, A. Seeger, A. Helser, R.M. Taylor II, S. Washburn, R. Superfine: Appl. Phys. Lett. 80, 2574 (2002) Google Scholar
  8. 8.
    J. Cumings, A. Zettl: Science 289, 602 (2000) Google Scholar
  9. 9.
    F. Banhart: Nano Lett. 1, 329 (2001) Google Scholar
  10. 10.
    D. Nørgaard Madsen, K. Mølhave, R. Mateiu, A.M. Rasmussen, M. Brorson, C.J.H. Jacobsen, P. Bøggild: Nano Lett. 3, 47 (2003) Google Scholar
  11. 11.
    F.A. Lowenheim: Modern Electroplating (John Wiley, New York 1963) Chapt. 33 Electroless Plating Google Scholar
  12. 12.
    F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhögl, M. Liebau, E. Unger, W. Hönlein: Microelectron. Eng. 64, 399 (2002) Google Scholar
  13. 13.
    G.S. Duesberg, A.P. Graham, M. Liebau, R. Seidel, E. Unger, F. Kreupl, W. Hönlein: Nano Lett. 3, 237 (2003) Google Scholar
  14. 14.
    J.J. Palacios, A.J. Perez-Jimenez, E. Louis, E. San Fabian, J.A. Verges: Phys. Rev. Lett. 90, 106801 (2003) Google Scholar
  15. 15.
    R. Seidel, M. Liebau, G.S. Duesberg, F. Kreupl, E. Unger, A.P. Graham, W. Hoenlein, W. Pompe: Nano Lett. online publication 20 May 2003Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • M. Liebau
    • 1
  • E. Unger
    • 1
  • G.S. Duesberg
    • 1
  • A.P. Graham
    • 1
  • R. Seidel
    • 1
  • F. Kreupl
    • 1
  • W. Hoenlein
    • 1
  1. 1.CPR Nano ProcessesInfineon Technologies AGMunichGermany

Personalised recommendations