Applied Physics A

, Volume 77, Issue 6, pp 839–846 | Cite as

Femtosecond pulsed laser ablation of 3CSiC thin film on silicon

Regular Paper

Abstract

A femtosecond pulsed Ti:sapphire laser (pulse width=120 fs, wavelength=800 nm, repetition rate=1 kHz) was employed to perform laser ablation of 1-μm-thick silicon carbide (3CSiC) films grown on silicon substrates. The threshold fluence and ablation rate, useful for the micromachining of the 3CSiC films, were experimentally determined. The material removal mechanisms vary depending on the applied energy fluence. At high laser fluence, a thermally dominated process such as melting, boiling and vaporizing of single-crystal SiC occurs. At low laser fluence, the ablation is a defect-activation process via incubation, defect accumulation, formation of nanoparticles and final vaporization of boundaries. The defect-activation process reduces the ablation threshold fluence and enhances lateral and vertical precision as compared to the thermally dominated mechanism. Helium, as an assistant gas, plays a major role in improving the processing quality and ablation rate of SiC thin films due to its inertness and high first ionization energy.

Keywords

Laser Ablation Laser Fluence Femtosecond Pulse Laser Sapphire Laser Ablation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu: Proc. IEEE 86, 1594 (1998) Google Scholar
  2. 2.
    M. Mehregany, C.A. Zorman: Thin Solid Films 355356, 518 (1999) Google Scholar
  3. 3.
    J.X. Zhao, B. Huttner, A. Menschig: Proc. SPIE 3618, 114 (1999) Google Scholar
  4. 4.
    B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann: Appl. Phys. A 63, 109 (1996) Google Scholar
  5. 5.
    K. Ozono, M. Obara, A. Usui, H. Sunakawa: Opt. Commun. 189, 103 (2001) Google Scholar
  6. 6.
    P.P. Pronko, S.K. Dutta, J. Squier, J.V. Rudd, D. Du, G. Mouron: Opt. Commun. 114, 106 (1995) Google Scholar
  7. 7.
    X. Liu, D. Du, G. Mourou: IEEE J. Quant. Electron. QE-33, 1706 (1997) Google Scholar
  8. 8.
    X. Zhu, D.M. Villeneuve, A.Y. Nauma, S. Nikumb, P.B. Corkum: Appl. Surf. Sci. 152, 138 (1999) Google Scholar
  9. 9.
    D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld: Appl. Surf. Sci. 150, 101 (1999) Google Scholar
  10. 10.
    J. Bonse, P. Rudolph, J. Krüger, S. Baudach, W. Kautek: Appl. Surf. Sci. 154155, 659 (2000) Google Scholar
  11. 11.
    S. Ameer-Beg, W. Perrie, S. Rathbone, J. Wright, W. Weaver, H. Champoux: Appl. Surf. Sci. 127129, 875 (1998) Google Scholar
  12. 12.
    C.A. Zorman, A.J. Fleischman, A.S. Dewa, M. Mehregany, C. Jacob, P. Pirouz: J. Appl. Phys. 78, 5136 (1995) Google Scholar
  13. 13.
    Z. Guosheng, P.M. Fauchet, A.E. Siegman: Phys. Rev. B 26, 5366 (1982) Google Scholar
  14. 14.
    J.F. Young, J.E. Sipe, H.M. Van Driel: Phys. Rev. B 30, 2001 (1984) Google Scholar
  15. 15.
    J. Bonse, J.M. Wrobel, J. Krüger, W. Kautek: Appl. Phys. A 72, 89 (2001) Google Scholar
  16. 16.
    J. Bonse, S. Baudach, J. Krüger, M. Lenzner: Appl. Phys. A 74, 19 (2002) Google Scholar
  17. 17.
    I.W. Boyd: Laser Processing of Thin Films and Microstructures (Springer-Verlag, Berlin, Heidelberg 1987) p. 36 Google Scholar
  18. 18.
    G.L. Harris: Properties of Silicon Carbide (Inst. Electrical Eng., London 1995) Google Scholar
  19. 19.
    J. Sun, J.P. Longtin: Therm. Sci. Eng. 7, 81 (1999). The first ionization energy (kJ/mol) of the following elements are: H, 1312.0; He, 23272.3; N, 1402.3; O, 1313.9; and C, 1086.5. http://www.webelements.com/webelements/properties/MATHGoogle Scholar
  20. 20.
    J.M. Liu: Opt. Lett. 7, 196 (1982) Google Scholar
  21. 21.
    P.L. Liu, R. Yen, N. Bloembergen, R.T. Hodgson: Appl. Phys. Lett. 34, 864 (1979) Google Scholar
  22. 22.
    A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. Von Der Linde: J. Appl. Phys. 85, 3301 (1999) Google Scholar
  23. 23.
    T. Yoshida, S. Takeyama, Y. Yamada, K. Mutoh: Appl. Phys. Lett. 68, 1772 (1996) Google Scholar
  24. 24.
    T. Makimura, T. Mizuta, K. Murakami: Appl. Phys. Lett. 76, 1401 (2000) Google Scholar
  25. 25.
    T. Makimura, T. Mizuta, K. Murakami: Appl. Phys. A 69, S213 (1999) Google Scholar
  26. 26.
    Z. Paszti, G. Peto, Z.E. Horvath, A. Karacs: Appl. Surf. Sci. 168, 114 (2000) Google Scholar
  27. 27.
    S. Facsko, T. Bobek, H. Kurz, T. Dekorsy, S. Kyrata, R. Cremer: Appl. Phys. Lett. 80, 130 (2002) Google Scholar
  28. 28.
    H.W.K. Tom, G.D. Aumiller, C.H. Brito-Cruz: Phys. Rev. Lett. 60, 1438 (1988) Google Scholar
  29. 29.
    S.V. Govorkov, I.L. Shumay, W. Rudolph, T. Schröder: Opt. Lett. 16, 1013 (1991) Google Scholar
  30. 30.
    L.Y. Sadler, M. Shamsuzzoha: J. Mater. Res. 12, 147 (1997)Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIowa State UniversityAmesUSA

Personalised recommendations