Applied Physics A

, Volume 79, Issue 7, pp 1797–1799 | Cite as

Photoluminescence behavior of purpose-built ZnO arrays on different growth substrates

  • Y.L. Shi
  • J. Wang
  • H.L. LiEmail author


We fabricated purpose-built ZnO arrays directly on ITO conductive glass and in nanochannels of polycarbonate membrane, and investigated their photoluminescence properties. The former sample exhibited only two peaks at 360 and 390 nm, which correspond to the recombination of e–h+, and UV band emission, which confirms minimal defects existed. After annealing, the second kind of samples showed an additional two peaks, located at 488 and 540 nm. This fact may be explained by the defects in the newly formed ZnO, which is derived from Zn2+ adsorbed on the surface of the ZnO nanoparticles in the nanochannel.


Recombination Polycarbonate Band Emission Growth Substrate Photoluminescence Property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Zhong, A.H. Kitai, P. Mascher: J. Electrochem. Soc. 140, 3644 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade: J. Appl. Phys. 79, 7983 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    S. Monticone, R. Tufeu, A.V. Kanaev: J. Phys. Chem. B 102, 2854 (1998)CrossRefGoogle Scholar
  4. 4.
    U. Koch, A. Fojtik, H. Weller, A. Henglein: Chem. Phys. Lett. 122, 507 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    S.A. Studenikin, N. Golego, M. Cocivera: J. Appl. Phys. 84, 2287 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    K. Borgohain, S. Mahamuni: Semicond. Sci. Technol. 13, 1154 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    S. Mahamuni, K. Borgohain, B.S. Bendre, V.J. Leppert, S.H. Risbud: J. Appl. Phys. 85, 2861 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang: Appl. Phys. Lett. 78, 1125 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Li, G.W. Meng, L.D. Zhang, F. Phillipp: Appl. Phys. Lett. 76, 2011 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    L. Vayssieres, A. Hagfeldt, S.E. Lindquist: Pure Appl. Chem. 72, 47 (2000)CrossRefGoogle Scholar
  11. 11.
    L. Vayssieres, K. Keis, S.E. Lindquist, A. Hagfeldt: J. Phys. Chem. B 105, 3350 (2001)CrossRefGoogle Scholar
  12. 12.
    L. Spanhel, M.A. Anderson: J. Am. Chem. Soc. 113, 2826 (1991)CrossRefGoogle Scholar
  13. 13.
    P.V. Kamat, B. Patrick: J. Phys. Chem. 96, 6829 (1992)CrossRefGoogle Scholar
  14. 14.
    L. Spanhel, H. Weller, A. Henglein: J. Am. Chem. Soc. 109, 6632 (1987)CrossRefGoogle Scholar
  15. 15.
    P. Hoyer, R. Eichberger, H. Weller: Ber. Bunsenges. Phys. Chem. 97, 630 (1993)CrossRefGoogle Scholar
  16. 16.
    C.M. Mo, Y.H. Li, Y.S. Liu, Y. Zhang, L.D. Liu: J. Appl. Phys. 83, 4389 (1998)ADSCrossRefGoogle Scholar
  17. 17.
    E. Mollwo: Z. Phys. 138, 478 (1954)ADSCrossRefGoogle Scholar
  18. 18.
    T. Sekiguchi, N. Ohashi, Y. Terada: Jpn. J. Appl. Phys. 36, L289 (1997)ADSCrossRefGoogle Scholar
  19. 19.
    M. Liu, A.H. Kitai, P. Mascher: J. Lumin. 54, 35 (1992)CrossRefGoogle Scholar
  20. 20.
    D.C. Reynolds, D.C. Look, B. Jogai, H. Morkoc: Solid State Commun. 101, 643 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Department of ChemistryLanzhou UniversityLanzhouP.R. China

Personalised recommendations