Applied Physics A

, Volume 79, Issue 3, pp 647–659

Fluorescence studies of polycrystalline Al2O3 composite constituents: piezo-spectroscopic calibration and applications

Article

Abstract

Optical fluorescence microscopy (OFM) was used to quantify the effect of applied stress or strain upon the position of the R fluorescence line of αAl2O3 composite constituents (fibers and matrices) prior to composite processing. Polycrystalline NextelTM Nextel 720 fibers were tested under tension and compression by means of a cantilever beam technique, whereas the polycrystalline matrix was tested in compression. The position of the R fluorescence line was correlated to applied strain and stress in order to provide the piezo-spectroscopic calibration curve and the corresponding coefficients for both sensors, which form the basis for interpretation of frequency shifts from full, all-alumina, composites. The piezo-spectroscopic coefficients of the polycrystalline matrix were found to be 2.57 cm-1 GPa-1 and 2.52 cm-1 GPa-1 for the R1 and R2 lines respectively, whereas the coefficients for the polycrystalline αAl2O3 Nextel 720 fibers were found to be 3.07 cm-1 GPa-1 and 2.91 cm-1 GPa-1 for the R1 and R2 lines, respectively. The effects of collection probe size, as well as penetration depth, are discussed. The established piezo-spectroscopic behavior is used inversely to quantify the residual stresses in the as-received fibers due to the presence of sizing, as well as in the thermally grown alumina layer of an industrial thermal barrier coating.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CRC Materials Science and Engineering Handbook, 3rd edn. (CRC Press LLC, Boca Raton, Florida 2001) Google Scholar
  2. 2.
    S. Suguno, Y. Tanab: J. Phys. Soc. Jpn. 13, 880 (1958) ADSCrossRefGoogle Scholar
  3. 3.
    S. Suguno, I. Tsujikaw: J. Phys. Soc. Jpn. 13, 899 (1958) ADSCrossRefGoogle Scholar
  4. 4.
    D. McClure: J. Chem. Phys. 36, 3118 (1962) Google Scholar
  5. 5.
    L. Grabner: J. Appl. Phys. 49, 580 (1978) ADSCrossRefGoogle Scholar
  6. 6.
    R.A. Forman, G.J. Piermarini, J.D. Barnett, S. Block: Science 176, 284 (1972) ADSCrossRefGoogle Scholar
  7. 7.
    G.J. Piermarini, S. Block, J.D. Barnett, R.A. Forman: J. Appl. Phys. 46, 2774 (1975) ADSCrossRefGoogle Scholar
  8. 8.
    Q. Ma, D.R. Clarke: Acta Metall. Mater. 41, 1811 (1993) CrossRefGoogle Scholar
  9. 9.
    J. He, D.R. Clarke: J. Am. Ceram. Soc. 78, 1347 (1995) CrossRefGoogle Scholar
  10. 10.
    Q. Ma, D.R. Clarke: J. Am. Ceram. Soc. 76, 1433 (1993) CrossRefGoogle Scholar
  11. 11.
    Q. Ma, D.R. Clarke: Acta Metall. Mater. 41, 1817 (1993) CrossRefGoogle Scholar
  12. 12.
    R.J. Young, X. Yang: Composites A 27, 737 (1996) CrossRefGoogle Scholar
  13. 13.
    J. He, D.R. Clarke: Proc. R. Soc. Lon. A 453, 1881 (1997) ADSCrossRefGoogle Scholar
  14. 14.
    D.M. Lipkin, D.R. Clarke: Oxidation of Metals 45, 267 (1996) CrossRefGoogle Scholar
  15. 15.
    R. Christensen, D.M. Lipkin, D.R. Clarke, K. Murphy: Appl. Phys. Lett. 69, 3754 (1996) ADSCrossRefGoogle Scholar
  16. 16.
    D.M. Lipkin, D.R. Clarke, M. Hollatz, M. Bobeth, W. Pompe: Corrosion Sci. 39, 231 (1997) CrossRefGoogle Scholar
  17. 17.
    V.K. Tolpygo, J. Dryden, D.R. Clarke: Acta Mater. 46, 927 (1998) CrossRefGoogle Scholar
  18. 18.
    G. Pezzotti, H. Okuda, N. Muraki, T. Nishida: J. European Ceramic Soc. 19, 601 (1999) CrossRefGoogle Scholar
  19. 19.
    G. Pezzotti, H. Suenobu, T. Nishida: J.Am. Ceramic Soc. 82, 1257 (1999) CrossRefGoogle Scholar
  20. 20.
    G. Pezzotti, O. Sbaizero, V. Sergo, N. Muraki, K. Maruyama, T. Nishida: J.Am. Ceramic Soc. 81, 187 (1998) CrossRefGoogle Scholar
  21. 21.
    J. He, D.R. Clarke: J. Am. Ceram. Soc. 80, 69 (1997) CrossRefGoogle Scholar
  22. 22.
    A. Paipetis, C. Vlattas, C. Galiotis: J. Raman Spect. 27, 519 (1996) ADSCrossRefGoogle Scholar
  23. 23.
    L.S. Schadler, C. Galiotis: Int. Mat. Rev. 40, 116 (1995) CrossRefGoogle Scholar
  24. 24.
    C. Galiotis: Micromechanics of Reinforcement using Laser Raman Spectroscopy, Microstructural Characterisation of Fiber-Reinforced Composites (Woodhead Publishing Ltd., Cambridge, England 1998) pp. 224–253 Google Scholar
  25. 25.
    N. Melanitis: Ph.D. Thesis (Queen Mary and Westfield College, Department of Materials, University of London 1991) Google Scholar
  26. 26.
    3M Corporation: 3M Nextel Ceramic Fiber Technical Notebook (http://www.3m.com/ceramics, 1999) Google Scholar
  27. 27.
    K.G. Dassios, M. Steen, C. Filiou: Mater. Sci. Eng. A (2003), in press Google Scholar
  28. 28.
    C. Filiou, C. Galiotis: Composites Sci. Tech. 59, 2149 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institute for Chemical Engineering and High Temperature ProcessesFoundation of Research & Technology-Hellas (FORTH)PatrasGreece

Personalised recommendations