Advertisement

Applied Physics A

, Volume 78, Issue 3, pp 415–421 | Cite as

UV laser micromachining of piezoelectric ceramic using a pulsed Nd:YAG laser

  • D.W. ZengEmail author
  • K. Li
  • K.C. Yung
  • H.L.W. Chan
  • C.L. Choy
  • C.S. Xie
Article

Abstract

UV laser (λ=355 nm) ablation of piezoelectric lead zirconate titanate (PZT) ceramics in air has been investigated under different laser parameters. It has been found that there is a critical pulse number (N=750). When the pulse number is smaller than the critical value, the ablation rate decreases with increasing pulse number. Beyond the critical value, the ablation rate becomes constant. The ablation rate and concentrations of O, Zr and Ti on the ablated surface increase with the laser fluence, while the Pb concentration decreases due to the selective evaporation of PbO. The loss of the Pb results in the formation of a metastable pyrochlore phase. ZrO2 was detected by XPS in the ablated zone. Also, the concentrations of the pyrochlore phase and ZrO2 increase with increasing laser fluence. These results clearly indicate that the chemical composition and phase structure in the ablated zone strongly depend on the laser fluence. The piezoelectric properties of the cut PZT ceramic samples completely disappear due to the loss of the Pb and the existence of the pyrochlore phase. After these samples were annealed at 1150 °C for 1 h in a PbO-controlled atmosphere, their phase structure and piezoelectric properties were recovered again. Finally, 1–3 and concentric-ring 2–2 PZT/epoxy composites were fabricated by UV laser micromachining and their thickness modes were measured by impedance spectrum analysis and a d33 meter. Both composites show high piezoelectric properties.

Keywords

Ceramic Sample Piezoelectric Property Laser Fluence Ablate Zone Ablation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.E. Newnham, D.P. Skinner, L.E. Cross: Mater. Res. Bull. 13, 525 (1978) CrossRefGoogle Scholar
  2. 2.
    W.A. Smith: Proc. SPIE 1733, 3 (1992) ADSCrossRefGoogle Scholar
  3. 3.
    R.J. Meyer Jr., T.R. Shrout, S.Y. Oshikawa: Ferroelectrics 2, 547 (1996) Google Scholar
  4. 4.
    W. Watzka, S. Seifert, H. Scholz, D. Sporn, A. Schonecker, L. Seffner: Ferroelectrics 2, 569 (1996) Google Scholar
  5. 5.
    A. Bandyopadhyay, R.K. Panda, J.V. Fanas, M.K. Agarwala, R. van Weeren, S.C. Danforth, A. Safari: Ferroelectrics 2, 999 (1996) Google Scholar
  6. 6.
    R. Liu, K.A. Harasiewicz, D. Knapik, N.A. Freeman, F. Stuart Foster: Appl. Phys. Lett. 75, 3390 (2001) ADSCrossRefGoogle Scholar
  7. 7.
    R. Farlow, W. Galbraith, M. Knowles, G. Hayward: IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control 48, 639 (2001) CrossRefGoogle Scholar
  8. 8.
    M. Mendes, V. Oliveira, R. Vilar, F. Beinhorn, J. Ihlemann, O. Conde: Appl. Surf. Sci. 154155, 29 (2000) Google Scholar
  9. 9.
    P. Buck, K. Wiegel: Opt. Quantum Electron 27, 1349 (1999) Google Scholar
  10. 10.
    K.C. Yung, D.W. Zeng: Surf. Coat. Technol. 145, 186 (2001) CrossRefGoogle Scholar
  11. 11.
    K.C. Yung, D.W. Zeng, T.M. Yue: Appl. Surf. Sci. 173, 193 (2001) ADSCrossRefGoogle Scholar
  12. 12.
    J.H. Yoo, S.H. Jeong, R. Greif, R.E. Russo: J. Appl. Phys. 15, 2400 (2001) Google Scholar
  13. 13.
    P. Verardi, F. Cracium, L. Mirenghi, M. Dinescu, V. Sandu: Appl. Surf. Sci. 138139, 552 (1999) Google Scholar
  14. 14.
    D. Briggs, M.P. Seah (Eds.): Practical Surface Analysis Vol. 1, 2nd edn. (Wiley, New York 1990) Google Scholar
  15. 15.
    S. Starke, A. Schönecker, W. Gebhardt: Application of ferroelectrics, Proceedings of the eleventh IEEE international symposium 393 (1998) Google Scholar
  16. 16.
    X.C. Geng, Q.M. Zhang: J. Appl. Phys. 85, 1342 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik: J. Appl. Phys. 85, 6803 (1999) ADSCrossRefGoogle Scholar
  18. 18.
    W.W. Duley: UV Lasers: Effects and Applications in Materials Science (Cambridge University Press, Cambridge 1996) Google Scholar
  19. 19.
    G.V. Samsonov: The Oxide Handbook, Translated from Russian by R.K. Johnston (IFI/Plenum, New York 1982) Google Scholar
  20. 20.
    G.C. Tyrrel, S.M. Park, J.Y. Moon: Appl. Surf. Sci. 174, 87 (2001) CrossRefGoogle Scholar
  21. 21.
    T.H. York, L.G. Coccia, I.W. Boyd: Appl. Surf. Sci. 9698, 769 (1996) Google Scholar
  22. 22.
    C.M. Cotell, K.S. Grabowski: MRS Bull. 17, 44 (1992) Google Scholar
  23. 23.
    Y. Hirayama, H. Yabe, M. Obara: J. Appl. Phys. 89, 2943 (2001) ADSCrossRefGoogle Scholar
  24. 24.
    T.J. Li, Q.H. Lou, J.X. Dong, Y.R. Wei, J.R. Liu: Appl. Surf. Sci. 172, 356 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • D.W. Zeng
    • 1
    Email author
  • K. Li
    • 2
  • K.C. Yung
    • 3
  • H.L.W. Chan
    • 2
  • C.L. Choy
    • 2
  • C.S. Xie
    • 1
  1. 1.The State Key Laboratory of Plastic Forming Simulation and Mould Technology, Department of Materials Science and EngineeringHuazhong University of Science and TechnologyWuhanP.R. China
  2. 2.Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHong KongP.R. China
  3. 3.Department of Industrial and Systems EngineeringThe Hong Kong Polytechnic UniversityHong KongP.R. China

Personalised recommendations