Skip to main content

Advertisement

Log in

Symbiodiniaceae conduct under natural bleaching stress during advanced gametogenesis stages of a mesophotic coral

  • Note
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The mesophotic coral Alveopora allingi from the northern Gulf of Eilat/Aqaba, Red Sea, is affected by year-round partial coral-bleaching events. During these events, the migration of Symbiodiniaceae takes place from the coral-host mesoglea to the developed oocytes in bleached parts of colonies of A. allingi but not in the non-bleached parts. Additionally, these oocytes are abnormal, missing part of the structural material of the peripheral areas, and are also significantly larger in the bleached areas of the colonies. Hence, we suggest a parasitic behavior of the symbionts or a commensalism relationship which enhance symbionts' needs during bleaching periods and may boost the gametogenesis development in these corals. We propose that evolutionarily, this behavior may greatly contribute to the symbiont community survival throughout the bleaching period, and it can also be beneficial for the host's persistence and adaptation to bleaching through the acquisition of a specific symbiont community following the bleaching event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baird AH, Guest JR, Willis BL (2009) Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu Rev Ecol Evol Syst 40:551–571

    Article  Google Scholar 

  • Baker EK, Puglise KA, Harris PT (2016) Mesophotic Coral Ecosystems: A Lifeboat for Coral Reefs? United Nations Environment Programme and GRID-Arendal

  • Baker DM, Freeman CJ, Wong JC, Fogel ML, Knowlton N (2018) Climate change promotes parasitism in a coral symbiosis. ISME J 12:921–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bongaerts P, Ridgway T, Sampayo E, Hoegh-Guldberg O (2010) Assessing the ‘deep reef refugia’hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327

    Article  Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, DeVantier L (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563

    Article  CAS  PubMed  Google Scholar 

  • Eyal G, Tamir R, Kramer N, Eyal-Shaham L, Loya Y (2019) The Red Sea: Israel Mesophotic coral ecosystems. Springer, pp199–214

  • Eyal-Shaham L, Eyal G, Tamir R, Loya Y (2016) Reproduction, abundance and survivorship of two Alveopora spp. in the mesophotic reefs of Eilat, Red Sea. Scientific reports 6:20964

  • Eyal-Shaham L, Eyal G, Sakai K, Nozawa Y, Harii S, Sinniger F, Bronstein O, Ben-Zvi O, Shlesinger T, Loya Y (2019) Repetitive sex change in the stony coral Herpolitha limax across a wide geographic range. Sci Rep 9:1–12

    Article  CAS  Google Scholar 

  • Eyal-Shaham L, Eyal G, Ben-Zvi O, Sakai K, Harii S, Sinniger F, Hirose M, Cabaitan P, Bronstein O, Feldman B (2020) A unique reproductive strategy in the mushroom coral Fungia fungites. Coral Reefs:1–12

  • Fabina NS, Putnam HM, Franklin EC, Stat M, Gates RD (2013) Symbiotic specificity, association patterns, and function determine community responses to global changes: defining critical research areas for coral-Symbiodinium symbioses. Glob Change Biol 19:3306–3316

    Google Scholar 

  • Fine M, Gildor H, Genin A (2013) A coral reef refuge in the Red Sea. Glob Change Biol 19:3640–3647

    Article  Google Scholar 

  • Fitt W, Warner M (1995) Bleaching patterns of four species of Caribbean reef corals. Biol Bull 189:298–307

    Article  CAS  PubMed  Google Scholar 

  • Frade PR, Bongaerts P, Englebert N, Rogers A, Gonzalez-Rivero M, Hoegh-Guldberg O (2018) Deep reefs of the Great Barrier Reef offer limited thermal refuge during mass coral bleaching. Nat Commun 9:3447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Glynn P (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17

    Article  Google Scholar 

  • Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Change Biol 2:495–509

    Article  Google Scholar 

  • Goreau TJ, Hayes RL (1994) Coral bleaching and ocean" hot spots". Ambio-Journal of Human Environment Research and Management 23:176–180

    Google Scholar 

  • Grottoli AG, Tchernov D, Winters G (2017) Physiological and Biogeochemical Responses of Super-Corals to Thermal Stress from the Northern Gulf of Aqaba. Red Sea Frontiers in Marine Science 4:215

    Article  Google Scholar 

  • Harrison PL (2011) Sexual reproduction of scleractinian corals Coral reefs: an ecosystem in transition. Springer, pp59–85

  • Hill R, Ralph PJ (2007) Post-bleaching viability of expelled zooxanthellae from the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 352:137–144

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Google Scholar 

  • Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17:360–365

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  PubMed  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC (2018) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83

    Article  CAS  PubMed  Google Scholar 

  • Kirk N, Thornhill D, Kemp D, Fitt W, Santos S (2013) Ubiquitous associations and a peak fall prevalence between apicomplexan symbionts and reef corals in Florida and the Bahamas. Coral Reefs 32:847–858

    Article  Google Scholar 

  • Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci 98:5419–5425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as a habitat. the american naturalist 162:S51-S62

  • Kondrashov AS (1988) Deleterious mutations and the evolution of sexual reproduction. Nature 336:435–440

    Article  CAS  PubMed  Google Scholar 

  • Krueger T, Horwitz N, Bodin J, Giovani M-E, Escrig S, Meibom A, Fine M (2017) Common reef-building coral in the Northern Red Sea resistant to elevated temperature and acidification. Royal Society open science 4:170038

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kushmaro A, Loya Y, Fine M, Rosenberg E (1996) Bacterial infection and coral bleaching. Nature 380:396

    Article  CAS  Google Scholar 

  • LaJeunesse TC (2020) Zooxanthellae. Curr Biol 30:R1110–R1113

    Article  CAS  PubMed  Google Scholar 

  • Lesser M, Stat M, Gates R (2013) The endosymbiotic dinoflagellates (Symbiodinium sp.) of corals are parasites and mutualists. Coral Reefs 32:603–611

    Article  Google Scholar 

  • Loya Y (2004) The coral reefs of Eilat—past, present and future: three decades of coral community structure studies Coral Health and disease. Springer, pp1–34

  • Loya Y (2007) How to influence environmental decision makers? The case of Eilat (Red Sea) coral reefs. J Exp Mar Biol Ecol 344:35–53

    Article  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Muller-Parker G, D’elia CF, Cook CB (2015) Interactions between corals and their symbiotic algae Coral Reefs in the anthropocene. Springer, pp99–116

  • Nir O, Gruber DF, Shemesh E, Glasser E, Tchernov D (2014) Seasonal mesophotic coral bleaching of Stylophora pistillata in the Northern Red Sea. PLoS ONE 9:e84968

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, Voolstra CR, Suggett DJ (2018) Thermal refugia against coral bleaching throughout the northern Red Sea. Glob Change Biol 24:e474–e484

    Article  Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJ, Paredes G (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  CAS  PubMed  Google Scholar 

  • Peng S-E, Moret A, Chang C, Mayfield AB, Ren Y-T, Chen W-NU, Giordano M, Chen C-S (2020) A shift away from mutualism under food-deprived conditions in an anemone-dinoflagellate association. PeerJ 8:e9745

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinheiro HT, Eyal G, Shepherd B, Rocha LA (2019) Ecological insights from environmental disturbances in mesophotic coral ecosystems. Ecosphere 10

  • R Development Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rocha LA, Pinheiro HT, Shepherd B, Papastamatiou YP, Luiz OJ, Pyle RL, Bongaerts P (2018) Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science 361:281–284

    Article  CAS  PubMed  Google Scholar 

  • Rowan R (2004) Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430:742–742

    Article  CAS  PubMed  Google Scholar 

  • Rundle HD, Chenoweth SF, Blows MW (2006) The roles of natural and sexual selection during adaptation to a novel environment. Evolution 60:2218–2225

    Article  PubMed  Google Scholar 

  • Shlesinger T, Loya Y (2019) Sexual reproduction of scleractinian corals in mesophotic coral ecosystems vs. shallow reefs Mesophotic Coral Ecosystems. Springer, pp653–666

  • Suggett DJ, Smith DJ (2020) Coral bleaching patterns are the outcome of complex biological and environmental networking. Glob Change Biol 26:68–79

    Article  Google Scholar 

  • Szmant A, Gassman N (1990) The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs 8:217–224

    Article  Google Scholar 

  • Trench R (1971) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates III. The effect of homogenates of host tissues on the excretion of photosynthetic products in vitro by zooxanthellae from two marine coelenterates. Proc R Soc Lond B 177:251–264

    Article  CAS  Google Scholar 

  • van Oppen MJ, Mahiny AJ, Done TJ (2005) Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs 24:482–487

    Article  Google Scholar 

  • Wooldridge SA (2010) Is the coral-algae symbiosis really ‘mutually beneficial’for the partners? BioEssays 32:615–625

    Article  CAS  PubMed  Google Scholar 

  • Wooldridge SA (2013) Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences 10:1647–1658

    Article  Google Scholar 

  • Ziegler M, Arif C, Burt JA, Dobretsov S, Roder C, LaJeunesse TC, Voolstra CR (2017) Biogeography and molecular diversity of coral symbionts in the genus Symbiodinium around the Arabian Peninsula. J Biogeogr 44:674–686

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegler M, Eguíluz VM, Duarte CM, Voolstra CR (2018) Rare symbionts may contribute to the resilience of coral–algal assemblages. ISME J 12:161–172

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Interuniversity Institute for Marine Sciences in Eilat for the logistical support, and Barbara Colorni for help with the histological work. The comments of two anonymous reviewers greatly improved the manuscript. This study was supported by the Israel Science Foundation (ISF) No. 1191/16 to YL and by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie post-doctoral grant agreement No. 796025 to GE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Eyal.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standards

All samples were collected and treated according to the Israeli Nature and Parks Authority permit no. 2011/38249.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Dr. Simon Davy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eyal, G., Eyal-Shaham, L. & Loya, Y. Symbiodiniaceae conduct under natural bleaching stress during advanced gametogenesis stages of a mesophotic coral. Coral Reefs 40, 959–964 (2021). https://doi.org/10.1007/s00338-021-02082-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-021-02082-1

Keywords

Navigation