Advertisement

Coral Reefs

, Volume 39, Issue 1, pp 69–83 | Cite as

Solenosmilia variabilis-bearing cold-water coral mounds off Brazil

  • J. RaddatzEmail author
  • J. Titschack
  • N. Frank
  • A. Freiwald
  • A. Conforti
  • A. Osborne
  • S. Skornitzke
  • W. Stiller
  • A. Rüggeberg
  • S. Voigt
  • A. L. S. Albuquerque
  • A. Vertino
  • A. Schröder-Ritzrau
  • A. Bahr
Report

Abstract

Cold-water corals (CWC), dominantly Desmophyllum pertusum (previously Lophelia pertusa), and their mounds have been in the focus of marine research during the last two decades; however, little is known about the mound-forming capacity of other CWC species. Here, we present new 230Th/U age constraints of the relatively rarely studied framework-building CWC Solenosmilia variabilis from a mound structure off the Brazilian margin combined with computed tomography (CT) acquisition. Our results show that S. variabilis can also contribute to mound formation, but reveal coral-free intervals of hemipelagic sediment deposits, which is in contrast to most of the previously studied CWC mound structures. We demonstrate that S. variabilis only occurs in short episodes of < 4 kyr characterized by a coral content of up to 31 vol%. In particular, it is possible to identify distinct clusters of enhanced aggradation rates (AR) between 54 and 80 cm ka−1. The determined AR are close to the maximal growth rates of individual S. variabilis specimens, but are still up to one order of magnitude smaller than the AR of D. pertusum mounds. Periods of enhanced S. variabilis AR predominantly fall into glacial periods and glacial terminations that were characterized by a 60–90 m lower sea level. The formation of nearby D. pertusum mounds is also associated with the last glacial termination. We suggest that the short-term periods of coral growth and mound formation benefited from enhanced organic matter supply, either from the adjacent exposed shelf and coast and/or from enhanced sea-surface productivity. This organic matter became concentrated on a deeper water-mass boundary between South Atlantic Central Water and the Antarctic Intermediate Water and may have been distributed by a stronger hydrodynamic regime. Finally, periods of enhanced coral mound formation can also be linked to advection of nutrient-rich intermediate water masses that in turn might have (directly or indirectly) further facilitated coral growth and mound formation.

Keywords

Cold-water corals South Atlantic 230Th/U Computed tomography 

Notes

Acknowledgements

The authors thank the captain, crew members and the scientific party of RV Meteor cruise M125. JR acknowledges funding from the Focus Track A/B programme by the Goethe University Frankfurt. JT received funding by the DFG-Research Center/Cluster of Excellence “The Ocean in the Earth System” and the Cluster of Excellence “The Ocean Floor – Earth’s Uncharted Interface”. Data of S. variabilis distribution around New Zealand were provided by the NIWA Invertebrate Collection, where the specimens were collected as part of numerous research programs funded by agencies such as the New Zealand Ministry of Business Innovation and Employment, Fisheries New Zealand, New Zealand Department of Conservation and Land Information New Zealand. AR acknowledges support from Swiss National Science Foundation Project Number SNF 200021_149247. The authors are grateful to the Heidelberg University Hospital for providing access to the CT facility. We also appreciate the help by Frederik Kirst with the GIS based map. NF was supported by the DFG Grant FR1341/9-1 regarding the Th/U dating of cold-water corals and by the DFG Grant INST 35_1143-1 FUGG, which funded the MC-ICPMS infrastructure. This work would not have been possible without the laboratory support for 230Th/U dating provided by René Eichstädter, and the student helpers Carla Roesch and Hanna Rosenthal. Finally, the authors thank Helen Bostock and two anonymous reviewers as well as the topical editor, whose comments considerably improved the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

338_2019_1882_MOESM1_ESM.docx (23 kb)
Supplementary material 1 (DOCX 24 kb)

References

  1. Addamo AM, Vertino A, Stolarski J, García-Jiménez R, Taviani M, Machordom A (2016) Merging scleractinian genera: The overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol 16:1–17Google Scholar
  2. Albuquerque AL, Meyers P, Belem AL, Turcq B, Siffedine A, Mendoza U, Capilla R (2016) Mineral and elemental indicators of post-glacial changes in sediment delivery and deposition under a western boundary upwelling system (Cabo Frio, southeastern Brazil). Palaeogeogr Palaeoclimatol Palaeoecol 445:72–82Google Scholar
  3. Andersen MB, Stirling CH, Zimmermann B, Halliday AN (2010) Precise determination of the open ocean 234U/238U composition. Geochem Geophys Geosys.  https://doi.org/10.1029/2010GC003318 CrossRefGoogle Scholar
  4. Anderson RF, Ali S, Bradtmiller LI, Nielsen SHH, Fleisher MQ, Anderson BE, Burckle LH (2009) Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323:1443–1448PubMedGoogle Scholar
  5. Anderson OF, Guinotte JM, Rowden AA, Clark MR, Mormede S, Davies AJ, Bowden DA (2016) Field validation of habitat suitability models for vulnerable marine ecosystems in the South Pacific Ocean: Implications for the use of broad-scale models in fisheries management. Ocean Coast Manag 120:110–126Google Scholar
  6. Arantes RCM, Castro CB, Pires DO, Seoane JCS (2009) Depth and water mass zonation and species associations of cold-water octocoral and stony coral communities in the southwestern Atlantic. Mar Ecol Prog Ser 397:71–79Google Scholar
  7. Bahr A, Albuquerque A, and the Expedition M125 scientists (2016) South American hydrological balance and paleoceanography during the Late Pleistocene and Holocene (SAMBA)–cruise no. M125, March 21–April 15, 2016, Rio de Janeiro (Brazil)—Fortaleza (Brazil). METEOR-Berichte, BremenGoogle Scholar
  8. Bostock HC, Tracey DM, Currie KI, Dunbar GB, Handler MR, Mikaloff Fletcher SE, Smith AM, Williams MJM (2015) The carbonate mineralogy and distribution of habitat-forming deep-sea corals in the southwest pacific region. Deep Res Part I Oceanogr Res Pap 100:88–104Google Scholar
  9. Büscher JV, Form AU, Riebesell U (2017) Interactive effects of ocean acidification and warming on growth, fitness and survival of the cold-water coral Lophelia pertusa under different food availabilities. Front Mar Sci 4:1–14Google Scholar
  10. Cairns SD (1995) the marine Fauna of New Zeland: Scleractinia (Cnidaria: Anthozoa). New Zealand Oceanographic Institute Memior 103:1–210Google Scholar
  11. Cheng H, Adkins J, Edwards RL, Boyle EA (2000) U-Th dating of deep-sea corals. Geochim Cosmochim Acta 64:2401–2416Google Scholar
  12. da Carreira RS, Canuel EA, Macko SA, Lopes MB, Luz LG, Jasmim LN (2012) On the accumulation of organic matter on the southeastern Brazilian continental shelf: a case study based on a sediment core from the shelf off Rio de Janeiro. Brazilian J Oceanogr 60:75–87Google Scholar
  13. da Silveira ICA, Calado L, Castro BM, Cirano M, Lima JAM, Mascarenhas AS (2004) On the baroclinic structure of the Brazil Current-Intermediate Western Boundary Current system at 22°-3°S. Geophys Res Lett 31:1–5Google Scholar
  14. Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6:e18483PubMedPubMedCentralGoogle Scholar
  15. De Mol L, Van Rooij D, Pirlet H, Greinert J, Frank N, Quemmerais F, Henriet JP (2011) Cold-water coral habitats in the Penmarc’h and Guilvinec Canyons (Bay of Biscay): Deep-water versus shallow-water settings. Mar Geol 282:40–52Google Scholar
  16. De S. Carvalho M, Lopes DA, Cosme B, Hajdu E (2016) Seven new species of sponges (Porifera) from deep-sea coral mounds at Campos Basin (SW Atlantic). Helgol Mar Res 70:10.  https://doi.org/10.1186/s10152-016-0461-z Google Scholar
  17. Duineveld GCA, Lavaleye MSS, Bergman MJN, De Stigter H, Mienis F (2007) Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bull Mar Sci 81:449–467Google Scholar
  18. Dullo WC, Flögel S, Rüggeberg A (2008) Cold-water coral growth in relation to the hydrography of the Celtic and Nordic European continental margin. Mar Ecol Prog Ser 371:165–176Google Scholar
  19. Douarin M, Elliot M, Noble SR, Sinclair D, Henry LA, Long D, Moreton SG, Murray Roberts J (2013) Growth of north-east Atlantic cold-water coral reefs and mounds during the Holocene: a high resolution U-series and 14C chronology. Earth Planet Sci Lett 375:176–187Google Scholar
  20. Eisele M, Frank N, Wienberg C, Hebbeln D, López Correa M, Douville E, Freiwald A (2011) Productivity controlled cold-water coral growth periods during the last glacial off Mauritania. Mar Geol 280:143–149Google Scholar
  21. Fallon SJ, Thresher RE, Adkins J (2014) Age and growth of the cold-water scleractinian Solenosmilia variabilis and its reef on SW Pacific seamounts. Coral Reefs 33:31–38Google Scholar
  22. Findlay HS, Hennige SJ, Wicks LC, Navas JM, Woodward EMS, Roberts JM (2014) Fine-scale nutrient and carbonate system dynamics around cold-water coral reefs in the northeast Atlantic. Sci Rep 4:1–10Google Scholar
  23. Frank N, Paterne M, Ayliffe L, van Weering T, Henriet JP, Blamart D (2004) Eastern North Atlantic deep-sea corals: Tracing upper intermediate water Δ14C during the Holocene. Earth Planet Sci Lett 219:297–309Google Scholar
  24. Frank N, Ricard E, Lutringer-paquet A, Van Der Land C, Colin C, Blamart D, Foubert A, Van Rooij D, Henriet J (2009) The Holocene occurrence of cold water corals in the NE Atlantic: Implications for coral carbonate mound evolution. Mar Geol 266:129–142Google Scholar
  25. Frank N, Freiwald A, López Correa M, Wienberg C, Eisele M, Hebbeln D, Van Rooij D, Henriet JP, Colin C, van Weering T, de Haas H, Buhl-Mortensen P, Roberts JM, De Mol B, Douville E, Blamart D, Hatté C (2011) Northeastern Atlantic cold-water coral reefs and climate. Geology 39:743–746Google Scholar
  26. Freiwald A (2002) Reef-forming cold-water corals. In: Wefer G, Billett D, Hebbeln D, Jørgensen BB, Schlüter M, van Weering TCE (eds) Ocean Margin Systems. Springer, Berlin, pp 365–385Google Scholar
  27. Freiwald A, Beuck L, Rüggeberg A, Taviani M, Hebbeln D (2009) The white coral community in the central Mediterranean Sea revealed by ROV surveys. Oceanography 22:58–74Google Scholar
  28. Freiwald A, Rogers A, Hall-Spencer J, Guinotte JM, Davies AJ, Yesson C, Martin CS, Weatherdon LV (2017) Global distribution of cold-water corals (version 5.0). Fifth update to the dataset in Freiwald et al. (2004) by UNEP-WCMC, in collaboration with Andre Freiwald and John Guinotte. Cambridge (UK): UN Environment World Conservation Monitoring Centre. http://data.unep-wcmc.org/datasets/3
  29. Freiwald A (unpublished) GloSS: Global Register of Species associated to habitat-forming cold-water Scleractinia. DatabaseGoogle Scholar
  30. Flögel S, Dullo WC, Pfannkuche O, Kiriakoulakis K, Rüggeberg A (2014) Geochemical and physical constraints for the occurrence of living cold-water corals. Deep Res Part II Top Stud Oceanogr 99:19–26Google Scholar
  31. Gammon MJ, Cummings VJ, Davy SK, Marriott PM, Tracey DM (2018) The physiological response of the deep-sea coral Solenosmilia variabilis to ocean acidification. PeerJ 6:e5236PubMedPubMedCentralGoogle Scholar
  32. Gass SE, Roberts JM (2011) Growth and branching patterns of Lophelia pertusa (Scleractinia) from the North Sea. J Mar Biol Assoc United Kingdom 91:831–835Google Scholar
  33. Gori A, Grover R, Orejas C, Sikorski S, Ferrier-Pagès C (2014) Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea. Deep Res Part II Top Stud Oceanogr 99:42–50Google Scholar
  34. Goyet C, Healy R, Ryan PJ (2000) Global distribution of total inorganic carbon and total alkalinity below the deepest winter mixed layer depths, ORNL/CDIAC-127, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, TennGoogle Scholar
  35. Hebbeln D, Wienberg C, Wintersteller P, Freiwald A, Becker M, Beuck L, Dullo C, Eberli GP, Glogowski S, Matos L, Forster N, Reyes-Bonilla H, Taviani M (2014) Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences 11:1799–1815Google Scholar
  36. Hebbeln D, da Portilho-Ramos RC, Wienberg C, Titschack J (2019) The Fate of Cold-Water Corals in a Changing World: A Geological Perspective. Front Mar Sci 6:1–8Google Scholar
  37. Hennige SJ, Wicks LC, Kamenos NA, Bakker DCE, Findlay HS, Dumousseaud C, Roberts JM (2014a) Short-term metabolic and growth responses of the cold-water coral Lophelia pertusa to ocean acidification. Deep Res Part II Top Stud Oceanogr 99:27–35Google Scholar
  38. Hennige SJ, Morrison CL, Form AU, Büscher J, Kamenos NA, Roberts JM (2014b) Self-recognition in corals facilitates deep-sea habitat engineering. Sci Rep 4:6782PubMedPubMedCentralGoogle Scholar
  39. Henry LA, Frank N, Hebbeln D, Wienberg C, Robinson L, de van Flierdt T, Dahl M, Douarin M, Morrison CL, Correa ML, Rogers AD, Ruckelshausen M, Roberts JM (2014) Global ocean conveyor lowers extinction risk in the deep sea. Deep Res Part I Oceanogr Res Pap 88:8–16Google Scholar
  40. Hovland M, Mortensen PB (1999) Norwegian Coral Reefs and Processes in the Seabed. John Grieg, Bergen, NorwayGoogle Scholar
  41. Hovland M, Mortensen PB, Brattegard T, Strass P, Rokoengen K (1998) Ahermatypic coral banks off mid-Norway: Evidence for a link with seepage of light hydrocarbons. Palaios 13:189–200Google Scholar
  42. Huvenne VAI, Masson DG, Wheeler AJ (2009) Sediment dynamics of a sandy contourite: The sedimentary context of the Darwin cold-water coral mounds, Northern Rockall Trough. Int J Earth Sci 98:865–884Google Scholar
  43. Kiefer T, McCave IN, Elderfield H (2006) Antarctic control on tropical Indian Ocean sea surface temperature and hydrography. Geophys Res Lett 33:10–15Google Scholar
  44. Kitahara MV (2006) Novas ocorrências de corais azooxantelados (Anthozoa, Scleractinia) na plataforma e talude continental do sul do Brasil (25-34o S). Biotemas 19:55–63Google Scholar
  45. Kitahara MV (2007) Species richness and distribution of azooxanthellate Scleractinia in Brazil. Bull Mar Sci 81:497–518Google Scholar
  46. Kiriakoulakis K, Fisher E, Wolff GA, Freiwald A, Grehan A, Roberts JM (2005) Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implication for their nutrition. In: Freiwald A, Roberts JM (eds) Cold-Water Corals and Ecosystems. Springer-Verlag, Berlin Heidelberg, pp 715–729Google Scholar
  47. Koslow JA, Gowlett-Holmes K, Lowry JK, O’Hara T, Poore GCB, Williams A (2001) Seamount benthic macrofauna off southern Tasmania: Community structure and impacts of trawling. Mar Ecol Prog Ser 213:111–125Google Scholar
  48. Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res C Ocean 110:1–16Google Scholar
  49. Lambert F, Bigler M, Steffensen JP, Hutterli M, Fischer H (2012) Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica. Clim Past 8:609–623Google Scholar
  50. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations, ORNL/CDIAC-105, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., U.S. Dep. of Energy, Oak Ridge, TennGoogle Scholar
  51. López Correa M, Montagna P, Joseph N, Rüggeberg A, Fietzke J, Flögel S, Dorschel B, Goldstein SL, Wheeler A, Freiwald A (2012) Preboreal onset of cold-water coral growth beyond the Arctic Circle revealed by coupled radiocarbon and U-series dating and neodymium isotopes. Quat Sci Rev 34:24–43Google Scholar
  52. Lindberg B, Mienert J (2005a) Sedimentological and geochemical environment of the Fugløy Reef off northern Norway. In: Freiwald A, Roberts JM (eds) Cold-Water Corals and Ecosystems. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 633–650Google Scholar
  53. Lindberg B, Mienert J (2005b) Postglacial carbonate production by cold-water corals on the Norwegian shelf and their role in the global carbonate budget. Geology 33:537–540Google Scholar
  54. Lindberg B, Berndt C, Mienert J (2007) The Fugloy Reef at 70° N; acoustic signature, geologic, geomorphologic and oceanographic setting. Int J Earth Sci 96:201–213Google Scholar
  55. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20:1–17Google Scholar
  56. Lumsden SE, Hourigan TF, Bruckner AW, Dorr G (2007) The state of deep coral ecosystems of the United States, NOAA Technical Memorandum CRCP-3, Silver Spring MDGoogle Scholar
  57. Mangini A, Godoy JM, Godoy ML, Kowsmann R, Santos GM, Ruckelshausen M, Schroeder-Ritzrau A, Wacker L (2010) Deep sea corals off Brazil verify a poorly ventilated Southern Pacific Ocean during H2, H1 and the Younger Dryas. Earth Planet Sci Lett 293:269–276Google Scholar
  58. Mahiques MM, Tessler MG, Maria Ciotti A, Da Silveira ICA, E Sousa SHDM, Figueira RCL, Tassinari CCG, Furtado VV, Passos RF (2004) Hydrodynamically driven patterns of recent sedimentation in the shelf and upper slope off Southeast Brazil. Cont Shelf Res 24:1685–1697Google Scholar
  59. Mahiques MM, Fukumoto MM, Silveira ICA, Figueira RCL, Bícego MC, Lourenço RA, Mello-E-Sousa SH (2007) Sedimentary changes on the Southeastern Brazilian upper slope during the last 35,000 years. An Acad Bras Cienc 79:171–181PubMedGoogle Scholar
  60. Mahiques M, Tessler MG, Antonio F, Toledo DL, Burone L, Cesar R, Figueira L (2010) The southern Brazilian shelf: general characteristics, Quaternary evolution and sediment distribution. Brazilian J Oceanogr 58:25–34Google Scholar
  61. Martínez-García A, Sigman DM, Ren H, Anderson RF, Straub M, Hodell DA, Jaccard SL, Eglinton TI, Haug GH (2014) Iron fertilization of the subantarctic ocean during the last ice age. Science (80-) 343:1347–1350Google Scholar
  62. McCulloch M, Taviani M, Montagna P, López Correa M, Remia A, Mortimer G (2010) Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas. Earth Planet Sci Lett 298:143–152Google Scholar
  63. Mémery L, Arhan M, Alvarez-Salgado XA, Messias MJ, Mercier H, Castro CG, Rios AF (2000) The water masses along the western boundary of the south and equatorial Atlantic. Prog Oceanogr 47:69–98Google Scholar
  64. Mienis F, de Stigter HC, White M, Duineveld G, de Haas H, van Weering TCE (2007) Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep Res Part I Oceanogr Res Pap 54:1655–1674Google Scholar
  65. Mienis F, van der Land C, de Stigter HC, van de Vorstenbosch M, de Haas H, Richter T, van Weering TCE (2009) Sediment accumulation on a cold-water carbonate mound at the Southwest Rockall Trough margin. Mar Geol 265:40–50Google Scholar
  66. Mienis F, Duineveld GCA, Davies AJ, Lavaleye MMS, Ross SW, Seim H, Bane J, Van Haren H, Bergman MJN, De Haas H, Brooke S, Van Weering TCE (2014) Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic. Biogeosciences 11:2543–2560Google Scholar
  67. Mikkelsen N, Erlenkeuser H, Killingley JS, Berger WH (1982) Norwegian corals: radiocarbon and stable isotopes in Lophelia pertusa. Boreas 11:163–171Google Scholar
  68. Mueller CE, Larsson AI, Veuger B, Middelburg JJ, Van Oevelen D (2014) Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11:123–133Google Scholar
  69. Muratli JM, Chase Z, Mix AC, McManus J (2010) Increased glacial-age ventilation of the Chilean margin by Antarctic Intermediate Water. Nat Geosci 3:23–26Google Scholar
  70. Pahnke K, Goldstein SL, Hemming SR (2008) Abrupt changes in Antarctic Intermediate Water circulation over the past 25,000 years. Nat Geosci 1:870–874Google Scholar
  71. Piola AR, Campos EJD, Möller OO, Charo M, Martinez C (2002) Subtropical Shelf Front off eastern South America. J Geophys Res Ocean 105:6565–6578Google Scholar
  72. Pires DO (2007) The azooxanthellate coral fauna of Brazil. Conserv Adapt Manag seamount Deep coral Ecosyst 265–272Google Scholar
  73. Pires DO, Silva JC, Bastos ND (2014) Reproduction of deep-sea reef-building corals from the southwestern Atlantic. Deep Res Part II Top Stud Oceanogr 99:51–63Google Scholar
  74. Purser A, Larsson AI, Thomsen L, van Oevelen D (2010) The influence of flow velocity and food concentration on Lophelia pertusa (Scleractinia) zooplankton capture rates. J Exp Mar Bio Ecol 395:55–62Google Scholar
  75. Poggemann DW, Hathorne EC, Nürnberg D, Frank M, Bruhn I, Reißig S, Bahr A (2017) Rapid deglacial injection of nutrients into the tropical Atlantic via Antarctic Intermediate Water. Earth Planet Sci Lett 463:118–126Google Scholar
  76. Raddatz J, Rüggeberg A, Margreth S, Dullo WC (2011) Paleoenvironmental reconstruction of Challenger Mound initiation in the Porcupine Seabight, NE Atlantic. Mar Geol 282:79–90Google Scholar
  77. Raddatz J, Rüggeberg A, Liebetrau V, Foubert A, Hathorne EC, Fietzke J, Eisenhauer A, Dullo WC (2014) Environmental boundary conditions of cold-water coral mound growth over the last 3 million years in the Porcupine Seabight, Northeast Atlantic. Deep Res Part II Top Stud Oceanogr 99:227–236Google Scholar
  78. Raddatz J, Nürnberg D, Tiedemann R, Rippert N (2017) Southeastern marginal West Pacific Warm Pool sea-surface and thermocline dynamics during the Pleistocene (2.5–0.5 Ma). Palaeogeogr Palaeoclimatol Palaeoecol 471:144–156Google Scholar
  79. Raddatz J, Liebetrau V, Trotter J, Rüggeberg A, Flögel S, Dullo WC, Eisenhauer A, Voigt S, McCulloch M (2016) Environmental constraints on Holocene cold-water coral reef growth off Norway: insights from a multiproxy approach. Paleoceanography 31:1350–1367Google Scholar
  80. Raddatz J, Rüggeberg A (2019) Constraining past environmental changes of cold-water coral mounds with geochemical proxies in corals and foraminifera. The Depositional Record.  https://doi.org/10.1002/dep2.98 CrossRefGoogle Scholar
  81. Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: The biology and geology of cold-water coral ecosystems. Science 312:543–547PubMedGoogle Scholar
  82. Roberts JM, Wheeler A, Freiwald A, Cairns S (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, CambridgeGoogle Scholar
  83. Rodrigues RR, Rothstein LM, Wimbush M (2007) Seasonal Variability of the South Equatorial Current Bifurcation in the Atlantic Ocean: A Numerical Study. J Phys Oceanogr 37:16–30Google Scholar
  84. Rohling EJ, Foster GL, Grant KM, Marino G, Roberts AP, Tamisiea ME, Williams F (2014) Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508:477–482PubMedGoogle Scholar
  85. Ronge TA, Steph S, Tiedemann R, Prange M, Merkel U, Nürnberg D, Kuhn G (2015) Pushing the boundaries: Glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years. Paleoceanography 30:23–38Google Scholar
  86. Rüggeberg A, Dorschel B, Dullo WC, Hebbeln D (2005) Sedimentary patterns I the vicinity of a carbonate mound in the Hovland Mound Province, Northern Porcupine Sebaight. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer-Verlag, Berlin Heidelberg, pp 87–112Google Scholar
  87. Rüggeberg A, Dullo WC, Dorschel B, Hebbeln D (2007) Environmental changes and growth history of a cold-water carbonate mound (Propeller Mound, Porcupine Seabight). Int J Earth Sci 96:57–72Google Scholar
  88. Rüggeberg A, Flögel S, Dullo WC, Hissmann K, Freiwald A (2011) Water mass characteristics and sill dynamics in a subpolar cold-water coral reef setting at Stjernsund, northern Norway. Mar Geol 282:5–12Google Scholar
  89. Rüggeberg A, Flögel S, Dullo WC, Raddatz J, Liebetrau V (2016) Paleoseawater density reconstruction and its implication for cold-water coral carbonate mounds in the northeast Atlantic through time. Paleoceanography 31:365–379Google Scholar
  90. Sánchez F, González-Pola C, Druet M, García-Alegre A, Acosta J, Cristoba J, Parra S, Ríos P, Altuna Á, Gómez-Ballesteros M, Muñoz-Recio A, Rivera J, Díaz del Río G (2014) Habitat characterization of deep-water coral reefs in La Gaviera Canyon (Avilés Canyon System, Cantabrian Sea). Deep Res Part II Top Stud Oceanogr 106:118–140Google Scholar
  91. Sarmiento JL, Gruber N, Brzezinski MA, Dunne JP (2004) High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427:56–60PubMedGoogle Scholar
  92. Schlitzer R. (2017) Ocean Data View, http://odv.awi.de
  93. Schröder-Ritzrau A, Freiwald A, Mangini A (2005) U/Th-dating of deep-water corals from the eastern North Atlantic and the western Mediterranean Sea. In: Freiwald A, Roberts JM (eds) Cold-water Corals and Ecosystems. Springer, Berlin, pp 157–172Google Scholar
  94. Skornitzke S, Raddatz J, Bahr A, Pahn G, Kauczor H-U, Stiller W (2019) Experimental application of an automated alignment correction algorithm for geological CT imaging: phantom study and application to sediment cores from cold-water coral mounds. Eur Radiol Exp 3:0–7Google Scholar
  95. Somoza L, Ercilla G, Urgorri V, León R, Medialdea T, Paredes M, Gonzalez FJ, Nombela MA (2014) Detection and mapping of cold-water coral mounds and living Lophelia reefs in the Galicia Bank, Atlantic NW Iberia margin. Mar Geol 349:73–90Google Scholar
  96. Spero HJ, Lea DW (2002) The cause of carbon isotope minimum events on glacial terminations. Science 296:522–525PubMedGoogle Scholar
  97. Stalling D, Westerhoff M, Hege HC (2005) Amira: A highly interactive system for visual data analysis. In: Hansen CD, Johnson CR (eds) Visualization Handbook. Elsevier Butterworth-Heinemann, Burlington/Oxford, pp 749–767Google Scholar
  98. Stramma L, England M (1999) On the water masses and mean circulation of the South Atlantic Ocean. J Geophys Res Ocean 104:20863–20883Google Scholar
  99. Sumida PYG, Yoshinaga MY, Madureira LASP, Hovland M (2004) Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Mar Geol 207:159–167Google Scholar
  100. Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans, their physics, chemistry, and general biology. Prentice-Hall, New YorkGoogle Scholar
  101. Taviani M, Angeletti L, Foglini F, Corselli C, Nasto I, Pons-Branchu E, Montagna P (2019) U/Th dating records of cold-water coral colonization in submarine canyons and adjacent sectors of the southern Adriatic Sea since the Last Glacial Maximum. Prog Oceanogr 175:300–308Google Scholar
  102. Thresher RE, Tilbrook B, Fallon S, Wilson NC, Adkins J (2011) Effects of chronic low carbonate saturation levels on the distribution, growth and skeletal chemistry of deep-sea corals and other seamount megabenthos. Mar Ecol Prog Ser 442:87–96Google Scholar
  103. Thresher R, Althaus F, Adkins J, Gowlett-Holmes K, Alderslade P, Dowdney J, Cho W, Gagnon A, Staples D, McEnnulty F, Williams A (2014) Strong depth-related zonation of megabenthos on a rocky continental margin (∼ 700-4000 m) off Southern Tasmania, Australia. PLoS One 9:e85872PubMedPubMedCentralGoogle Scholar
  104. Titschack J, Baum D, de Pol-Holz R, López Correa M, Forster N, Flögel S, Hebbeln D, Freiwald A (2015) Aggradation and carbonate accumulation of Holocene Norwegian cold-water coral reefs. Sedimentology 62:1–26Google Scholar
  105. Titschack J, Fink HG, Baum D, Wienberg C, Hebbeln D, Freiwald A (2016) Mediterranean cold-water corals - an important regional carbonate factory? Depos Rec 2:74–96Google Scholar
  106. Tracey DM, Rowden AA, Mackay KA, Compton T (2011) Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. Mar Ecol Prog Ser 430:1–22Google Scholar
  107. Tracey D, Bostock H, Currie K, Mikaloff-Fletcher S, Williams M, Hadfield M, Neil H, Guy C, Cummings V (2013) The potential impact of ocean acidification on deep-sea corals and fisheries habitat in New Zealand waters. New Zealand aquatic environment and biodiversity Report No. 117. 2013:101Google Scholar
  108. Trotter JA, Pattiaratchi C, Montagna P, Taviani M, Falter J, Thresher R, Hosie A, Haig D, Foglini F, Hua Q, McCulloch MT (2019) First ROV Exploration of the Perth Canyon: Canyon Setting, Faunal Observations, and Anthropogenic Impacts. Front Mar Sci 6:1–24Google Scholar
  109. Van Oevelen D, Mueller CE, Lundälv T, Middelburg JJ (2016a) Food selectivity and processing by the cold-water coral Lophelia pertusa. Biogeosciences 13:5789–5798Google Scholar
  110. van Oevelen D, Grehan A, Mohn C, Soetaert K, Rengstorf A (2016b) Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity. Sci Rep 6:1–9Google Scholar
  111. Venancio IM, Belem AL, dos Santos THR, Zucchi MR, Azevedo AEG, Capilla R, Albuquerque ALS (2014) Influence of continental shelf processes in the water mass balance and productivity from stable isotope data on the Southeastern Brazilian coast. J Mar Syst 139:241–247Google Scholar
  112. Viana AR, Faugères JC, Kowsmann RO, Lima JAM, Caddah LFG, Rizzo JG (1998) Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. Sediment Geol 115:133–157Google Scholar
  113. Viana AR, De Almeida W, De Almeida CW (2008) Upper slope sands: Late Quaternary shallow-water sandy contourities of Campos Basin, SW Atlantic Margin. Geol Soc London, Mem 22:261–270Google Scholar
  114. Walker MJC, Berkelhammer M, Björck S, Cwynar LC, Fisher DA, Long AJ, Lowe JJ, Newnham RM, Rasmussen SO, Weiss H (2012) Formal subdivision of the Holocene Series/Epoch: A Discussion Paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quat Sci 27:649–659Google Scholar
  115. Wang H, Lo Iacono C, Wienberg C, Titschack J, Hebbeln D (2019) Cold-water coral mounds in the southern Alboran Sea (western Mediterranean Sea): Internal waves as an important driver for mound formation since the last deglaciation. Mar Geol 412:1–18Google Scholar
  116. Wefing A-M, Arps J, Blaser P, Wienberg C, Hebbeln D, Frank N (2017) High precision U-series dating of scleractinian cold-water corals using an automated chromatographic U and Th extraction. Chem Geol 475:140–148Google Scholar
  117. White M, Mohn C, Stigter H, Mottram G (2005) Deep-water coral development as a function of hydrodynamics and surface productivity around the submarine banks of the Rockall Trough, NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin, pp 503–514Google Scholar
  118. White M, Dorschel B, Wheeler AJ, Foubert A, Hebbeln D (2007) Hydrodynamics and cold-water coral facies distribution related to recent sedimentary processes at Galway Mound west of Ireland. Mar Geol 244:184–195Google Scholar
  119. White M, Dorschel B (2010) The importance of the permanent thermocline to the cold water coral carbonate mound distribution in the NE Atlantic. Earth Planet Sci Lett 296:395–402Google Scholar
  120. Wienberg C, Hebbeln D, Fink HG, Mienis F, Dorschel B, Vertino A, López Correa M, Freiwald A (2009) Scleractinian cold-water corals in the Gulf of Cádiz-First clues about their spatial and temporal distribution. Deep Res Part I Oceanogr Res Pap 56:1873–1893Google Scholar
  121. Wienberg C, Frank N, Mertens KN, Stuut JB, Marchant M, Fietzke J, Mienis F, Hebbeln D (2010) Glacial cold-water coral growth in the Gulf of Cádiz: Implications of increased palaeo-productivity. Earth Planet Sci Lett 298:405–416Google Scholar
  122. Wienberg C, Titschack J (2017) Framework-forming scleractinian cold-water corals through space and time: A late Quaternary North Atlantic perspective. In: Rossi S, Bramanti L, Gori A, Orejas C (eds) Marine Animal Forests: the Ecology of Benthic Biodiversity Hotspots. Springer, pp. 699–732.  https://doi.org/10.1007/978-3-319-17001-5_16-1 Google Scholar
  123. Wienberg C, Titschack J, Freiwald A, Frank N, Lundälv T, Taviani M, Beuck L, Schröder-Ritzrau A, Krengel T, Hebbeln D (2018) The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation. Quat Sci Rev 185:135–152Google Scholar
  124. Worthington LV (1976) On the North Atlantic Circulation. John Hopkins University Press, BaltimoreGoogle Scholar
  125. Zibrowius H (1973) Scléractiniaries des Iles Saint Paul de Amsterdam (sud de l’Océan Indien). Tethys 5:747–777Google Scholar
  126. Zibrowius H (1980) Les Scleractiniaires de la Méditerranée et de l’Atlantique nord- oriental. Memoires de l’Institut Oceanographique (Monaco) 11:1–284Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • J. Raddatz
    • 1
    Email author
  • J. Titschack
    • 2
    • 3
  • N. Frank
    • 4
  • A. Freiwald
    • 3
    • 2
  • A. Conforti
    • 5
  • A. Osborne
    • 6
  • S. Skornitzke
    • 7
  • W. Stiller
    • 7
  • A. Rüggeberg
    • 8
  • S. Voigt
    • 1
  • A. L. S. Albuquerque
    • 9
  • A. Vertino
    • 10
    • 11
  • A. Schröder-Ritzrau
    • 4
  • A. Bahr
    • 12
  1. 1.Institute of Geosciences, Goethe University FrankfurtFrankfurt am MainGermany
  2. 2.MARUM - Center for Marine Environmental Sciences, University of BremenBremenGermany
  3. 3.Marine Research DepartmentSenckenberg am MeerWilhelmshavenGermany
  4. 4.Institut für Umweltphysik, Universität HeidelbergHeidelbergGermany
  5. 5.Istituto per lo studio degli impatti Antropici e Sostenibilità in ambiente marino, Consiglio Nazionale delle Ricerche (IAS CNR)OristanoItaly
  6. 6.GEOMAR Helmholtz Centre for Ocean ResearchKielGermany
  7. 7.Diagnostic and Interventional Radiology (DIR), Heidelberg University HospitalHeidelbergGermany
  8. 8.Department of GeosciencesUniversity of FribourgFribourgSwitzerland
  9. 9.Programa de Geociências (Geoquímica)Universidade Federal FluminenseNiteróiBrazil
  10. 10.Department of GeologyGhent UniversityGhentBelgium
  11. 11.Department of Earth and Environmental SciencesUniversity of Milano-BicoccaMilanItaly
  12. 12.Institut für Geowissenschaften, Universität HeidelbergHeidelbergGermany

Personalised recommendations