Advertisement

Coral Reefs

pp 1–14 | Cite as

Investigating the heat shock protein response involved in coral bleaching across scleractinian species in the central Red Sea

  • Davide SevesoEmail author
  • Roberto Arrigoni
  • Simone Montano
  • Davide Maggioni
  • Ivan Orlandi
  • Michael L. Berumen
  • Paolo Galli
  • Marina Vai
Report
  • 58 Downloads

Abstract

Coral bleaching represents the most serious threat to contemporary coral reefs. In response, focus is being laid on understanding the cellular processes involved in the response of corals to the environmental stresses and the molecular mechanisms that determine the bleaching patterns. In the present study, a component of the cellular stress response such as the expression of the heat shock proteins (Hsps) was analyzed following the coral bleaching event which occurred in the central Red Sea (Saudi Arabia) in 2015. During this event, corals of different species, growth forms and sites showed variable bleaching susceptibility. In particular, we investigated the expression of Hsp70, Hsp60 and Hsp32 in both healthy and bleached colonies belonging to four different coral species (Goniopora lobata, Porites lobata, Seriatopora hystrix and Stylophora pistillata), in order to explore the intra- and inter-specific modulation of these biomarkers as well as the existence of spatial patterns of Hsp expression. In healthy colonies, the level of all the biomarkers was significantly different among the different species, although within each species it remained similar regardless of the distance from the shore. All the coral species showed a significant modulation of the Hsp expression in response to bleaching, whose typology and amplitude were species-specific. In all the species, Hsp70 and Hsp60 showed a coordinated dual expression, which, in response to bleaching resulted in an up-regulation in G. lobata and P. lobata and in a down-regulation in S. hystrix and S. pistillata. Hsp32 was up-regulated in all four species following bleaching, indicative of elevated oxidative stress. Overall, the protein expression profiles of each species contribute to assess the role of Hsps in regulating the susceptibility to thermal stresses of the various coral taxa of the Red Sea.

Keywords

Heat shock proteins Heme oxygenase-1 Red Sea Coral bleaching Susceptibility 

Notes

Acknowledgements

The authors wish to thank Tullia Terraneo, Malek Amr Gusti and all the staff of the KAUST Reef Ecology Lab for logistic support and technical assistance during field activities in Saudi Arabia. The authors are also grateful to Francesca Pedretti and Ambra Nucci for laboratory assistance. This research was undertaken in accordance with the policies and procedures of the King Abdullah University of Science and Technology (KAUST). Permission to undertake the research has been obtained from the applicable governmental agencies in the investigated areas. The views expressed are purely those of the writers and may not in any circumstance be regarded as stating an official position of the European Commission.

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

338_2019_1878_MOESM1_ESM.docx (1.5 mb)
Supplementary material 1 (DOCX 1582 kb)

References

  1. Anthony KRN, Kerswell AP (2007) Coral mortality following extreme low tides and high solar radiation. Mar Biol 151:1623–1631CrossRefGoogle Scholar
  2. Arya R, Mallik M, Lakhotia SC (2007) Heat shock genes—integrating cell survival and death. J Biosci 32:595–610PubMedCrossRefPubMedCentralGoogle Scholar
  3. Baird AH, Bhagooli R, Ralph PJ, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20PubMedCrossRefPubMedCentralGoogle Scholar
  4. Balchin D, Hayer-Hartl M, Hartl FU (2016) In vivo aspects of protein folding and quality control. Science 353, aac4354PubMedCrossRefPubMedCentralGoogle Scholar
  5. Barshis DJ, Stillman JH, Gates RD, Toonen RJ, Smith LW, Birkeland C (2010) Protein expression and genetic structure of the coral Porites lobata in an environmentally extreme Samoan back reef: does host genotype limit phenotypic plasticity? Mol Ecol 19:1705–1720PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci 110:1387–1392PubMedCrossRefPubMedCentralGoogle Scholar
  7. Berkelmans R (2002) Time-integrated thermal bleaching thresholds of reefs and their variation on the Great Barrier Reef. Mar Ecol Progr Ser 229:73–82CrossRefGoogle Scholar
  8. Bozaykut P, Kartal Ozer N, Karademir B (2014) Regulation of protein turnover by heat shock proteins. Free Radic Biol Med 77:195–209PubMedCrossRefPubMedCentralGoogle Scholar
  9. Bromage E, Carpenter L, Kaattari S, Patterson M (2009) Quantification of coral heat shock proteins from individual coral polyps. Mar Ecol Prog Ser 376:123–132CrossRefGoogle Scholar
  10. Brown BE, Downs CA, Dunne RP, Gibb SW (2002) Exploring the basis of thermotolerance in the reef coral Goniastrea aspera. Mar Ecol Prog Ser 242:119–129CrossRefGoogle Scholar
  11. Cantin NE, Cohen AL, Karnauskas KB, Tarrant AM, McCorkle DC (2010) Ocean warming slows coral growth in the central Red Sea. Science 329:322–325PubMedCrossRefGoogle Scholar
  12. Chaidez V, Dreano D, Agusti S, Duarte CM, Hoteit I (2017) Decadal trends in Red Sea maximum surface temperature. Sci Rep 7:8144PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen B, Feder ME, Kang L (2018) Evolution of heat-shock protein expression underlying adaptive responses to environmental stress. Mol Ecol 27:3040–3054PubMedCrossRefGoogle Scholar
  14. Choresh O, Loya Y, Müller WE, Wiedenmann J, Azem A (2004) The mitochondrial 60-kDa heat shock protein in marine invertebrates: biochemical purification and molecular characterization. Cell Stress Chaperones 9:38PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chow AM, Ferrier-Pagès C, Khalouei S, Reynaud S, Brown IR (2009) Increased light intensity induces heat shock protein Hsp60 in coral species. Cell Stress Chaperones 14:469–476PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chow AM, Beraud E, Tang DWF, Ferriere-Pagès C, Brown IR (2012) Hsp60 protein pattern in coral is altered by environmental changes in light and temperature. Comp Biochem Physiol A 161:349–353CrossRefGoogle Scholar
  17. Clarke KR, Gorley RN (2015) Getting started with PRIMER v7. PRIMER-E: Plymouth, Plymouth Marine LaboratoryGoogle Scholar
  18. Coelho VR, Fenner D, Caruso C, Bayles BR, Huang Y, Birkeland C (2017) Shading as a mitigation tool for coral bleaching in three common Indo-Pacific species. J Exp Mar Biol Ecol 497:152–163CrossRefGoogle Scholar
  19. Cooper TF, Fabricius KE (2012) Pigmentation of massive corals as a simple bioindicator for marine water quality. Mar Pollut Bull 65:333–341PubMedCrossRefGoogle Scholar
  20. Couch CS, Burns JH, Liu G, Steward K, Gutlay TN, Kenyon J, Eakin CM, Kosaki RK (2017) Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PlosOne 12(9).  https://doi.org/10.1371/journal.pone.0185121 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Davis KA, Lentz SJ, Pineda J, Farrar JT, Starczak VR, Churchill JH (2011) Observations of the thermal environment on Red Sea platform reefs: a heat budget analysis. Coral Reefs 30:25–36CrossRefGoogle Scholar
  22. DeSalvo MK, Voolstra CR, Sunagawa S, Schwarz JA, Stillman JH, Coffroth MA, Szmant AM, Medina M (2008) Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata. Mol Ecol 17:3952–3971PubMedCrossRefPubMedCentralGoogle Scholar
  23. DeSalvo MK, Sunagawa S, Voolstra CR, Medina M (2010) Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata. Mar Ecol Progr Ser 402:97–113CrossRefGoogle Scholar
  24. Dixon GB, Davies SW, Aglyamova GV, Meyer E, Bay LK, Matz MV (2015) Genomic determinants of coral heat tolerance across latitudes. Science 348:1460–1462PubMedCrossRefPubMedCentralGoogle Scholar
  25. Downs CA, Downs A (2007) Preliminary examination of short-term cellular toxicological responses of the coral Madracis mirabilis to acute Irgarol 1051 exposure. Arch Environ Contam Toxicol 52:47–57PubMedCrossRefPubMedCentralGoogle Scholar
  26. Downs CA, Mueller E, Phillips S, Fauth JE, Woodley CM (2000) A molecular biomarker system for assessing the health of coral (Montastrea faveolata) during heat stress. Mar Biotechnol 2:533–544PubMedCrossRefPubMedCentralGoogle Scholar
  27. Downs CA, Fauth JE, Halas JC, Dustan P, Bemiss J, Woodley CM (2002) Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33:533–543PubMedCrossRefPubMedCentralGoogle Scholar
  28. Downs CA, Richmond RH, Mendiola WJ, Rougée L, Ostrander GK (2006) Cellular physiological effects of the MV Kyowa Violet fuel-oil spill on the hard coral, Porites lobata. Environ Toxicol Chem 25:3171–3180PubMedCrossRefPubMedCentralGoogle Scholar
  29. Downs CA, Kramarsky-Winter E, Woodley CM, Downs A, Winters G, Loya Y, Ostrander GK (2009) Cellular pathology and histopathology of hypo-salinity exposure on the coral Stylophora pistillata. Sci Total Environ 407:4838–4851PubMedCrossRefPubMedCentralGoogle Scholar
  30. Downs CA, Ostrander GK, Rougée LRA, Rongo T, Knutson S, Williams DE, Mendiola W, Holbrook J, Richmond RH (2012) The use of cellular diagnostics for identifying sublethal stress in reef corals. Ecotoxicology 21:768–782PubMedCrossRefGoogle Scholar
  31. Eakin CM, Liu G, Gomez AM, De La Cour JL, Heron SF, Skirving WJ, Geiger EF, Tirak KV, Strong AE (2016) Global coral bleaching 2014–2017: status and an appeal for observations. Reef Encounter 31:20–26Google Scholar
  32. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282CrossRefGoogle Scholar
  33. Fisher PL, Malme MK, Dove S (2012) The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types. Coral Reefs 31:473–485CrossRefGoogle Scholar
  34. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher P, Lajuenesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110CrossRefGoogle Scholar
  35. Furby KA, Bouwmeester J, Berumen ML (2013) Susceptibility of central Red Sea corals during a major bleaching event. Coral Reefs 32:505–513CrossRefGoogle Scholar
  36. Gardner SG, Raina JB, Nitschke MR, Nielsen DA, Stat M, Motti CA, Ralph PJ, Petrou K (2017) A multi-trait systems approach reveals a response cascade to bleaching in corals. BMC Biol 15:117.  https://doi.org/10.1186/s12915-017-0459-2 CrossRefPubMedCentralPubMedGoogle Scholar
  37. Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of Cell Protection by Heme Oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354PubMedCrossRefGoogle Scholar
  38. Guest JR, Baird AH, Maynard JA, Muttaqin E, Edwards AJ, Campbell SJ, Yewdall K, Affendi YA, Chou LM (2012) Contrasting patterns of coral bleaching susceptibility in 2010 suggest an adaptive response to thermal stress. PlosOne 7(3).  https://doi.org/10.1371/journal.pone.0033353 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Howells EJ, Berkelmans R, van Oppen MJ, Willis BL, Bay LK (2013) Historical thermal regimes define limits to coral acclimatization. Ecology 94:1078–1088PubMedCrossRefGoogle Scholar
  40. Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs JPA, Hoogenboom MO, Kennedy EV, Kuo CY, Lough CM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543(7645):373–377PubMedCrossRefGoogle Scholar
  41. Hughes TP, Kerry JT, Baird AH, Connolly SR, Dietzel A, Eakin CM, Heron SF, Hoey AS, Hoogenboom MO, Liu G, McWilliam MJ, Pears RJ, Pratchett MS, Skirving WJ, Stella JS, Torda G (2018a) Global warming transforms coral reef assemblages. Nature 556:492–496CrossRefGoogle Scholar
  42. Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs J-PA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018b) Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359:80–83CrossRefGoogle Scholar
  43. Hume BC, D’Angelo C, Smith EG, Stevens JR, Burt J, Wiedenmann J (2015) Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci Rep 5:8562Google Scholar
  44. Hume BC, Voolstra CR, Arif C, D’Angelo C, Burt JA, Eyal G, Loya Y, Wiedenmann J (2016) Ancestral genetic diversity associated with the rapid spread of stress-tolerant coral symbionts in response to Holocene climate change. Proc Natl Acad Sci 113:4416–4421PubMedCrossRefGoogle Scholar
  45. Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. PNAS 89:10302–10305PubMedCrossRefGoogle Scholar
  46. Jones RJ, Hoegh-Guldberg O, Larkum AW, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230CrossRefGoogle Scholar
  47. Kenkel CD, Aglyamova G, Alamaru A, Bhagooli R, Capper R, Cunning R, deVillers A, Haslun JA, Hedouin L, Keshavmurthy S, Kuehl KA, Mahmoud H, McGinty ES, Montoya-Maya PH, Palmer CV, Pantile R, Sanchez JA, Schils T, Silverstein RN, Squiers LB, Tang PC, Goulet TL, Matz MV (2011) Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PlosOne.  https://doi.org/10.1371/journal.pone.0026914 CrossRefGoogle Scholar
  48. Kenkel CD, Meyer E, Matz MV (2013) Gene expression under chronic heat stress in populations of the mustard hill coral (Porites astreoides) from different thermal environments. Mol Ecol 22:4322–4334PubMedCrossRefGoogle Scholar
  49. Kenkel CD, Sheridan C, Leal MC, Bhagooli R, Castillo KD, Kurata N, McGinty E, Goulet TL, Matz MV (2014) Diagnostic gene expression biomarkers of coral thermal stress. Mol Ecol Resour 14:667–678CrossRefGoogle Scholar
  50. Kenkel CD, Matz MV (2016) Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nature Ecol Evol 1:0014CrossRefGoogle Scholar
  51. Kleypas JA, McManus JW, Menez LAB (1999) Environmental limits to coral reef development: where do we draw the line? Am Zool 39:146–159CrossRefGoogle Scholar
  52. Kotb M, Hanafy MH, Rirache H, Matsumura S, Al-Sofyani A, Ahmed AG, Bawazir G, Al-Horani FA (2008) Status of Coral Reefs in the Red Sea and Gulf of Aden Region. In: Wilkinson CR (ed) Status of coral reefs of the world: 2008. Global Coral Reef Monitoring Network and Reef and Rainforest Research Centre, Townsville, pp 67–78Google Scholar
  53. Kültz D (2005) Molecular basis of the cellular stress response. Annu Rev Physiol 67:225–257PubMedCrossRefGoogle Scholar
  54. Le Nohaïc M, Ross CL, Cornwall CE, Comeau S, Lowe R, McCulloch MT, Schoepf V (2017) Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci Rep 7(1):14999PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192CrossRefGoogle Scholar
  56. Lesser MP (2011) Coral bleaching: causes and mechanisms. In: Dubinsky Z, Stambler N (eds) Coral Reefs: An Ecosystem in Transition. Springer, Netherlands, pp 405–419CrossRefGoogle Scholar
  57. Lough JM, Anderson KD, Hughes TP (2018) Increasing thermal stress for tropical coral reefs: 1871–2017. Sci Rep 8:6079PubMedPubMedCentralCrossRefGoogle Scholar
  58. Louis YD, Bhagooli R, Kenkel CD, Baker AC, Dyall SD (2017) Gene expression biomarkers of heat stress in scleractinian corals: Promises and limitations. Comp Biochem Physiol Part C Toxicol Pharmcol 191:63–77CrossRefGoogle Scholar
  59. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131CrossRefGoogle Scholar
  60. Maor-Landaw K, Levy O (2016) Gene expression profiles during short-term heat stress; branching vs. massive Scleractinian corals of the Red Sea. PeerJ 4:e1814PubMedPubMedCentralCrossRefGoogle Scholar
  61. Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163CrossRefGoogle Scholar
  62. Martinus RD, Ryan MT, Naylor DJ, Herd SM, Hoogenraad NJ, Hoj PB (1995) Role of chaperones in the biogenesis and maintenance of the mitochondrion. FASEB J 9:371–378PubMedCrossRefGoogle Scholar
  63. Mayer MP (2013) Hsp70 chaperone dynamics and molecular mechanism. Trends Biochem Sci 38:507–514PubMedCrossRefGoogle Scholar
  64. McClanahan TR, Maina J (2003) Response of coral assemblages to the interaction between natural temperature variation and rare warm-water events. Ecosystems 6:551–563CrossRefGoogle Scholar
  65. Monroe AA, Ziegler M, Roik A, Röthig T, Hardenstine RS, Emms MA, Jensen T, Voolstra CR, Berumen ML (2018) In situ observations of coral bleaching in the central Saudi Arabian Red Sea during the 2015/2016 global coral bleaching event. PlosOne 13:1–13Google Scholar
  66. Montano S, Seveso D, Galli P, Obura DO (2010) Assessing coral bleaching and recovery with a colour reference card in Watamu Marine Park, Kenya. Hydrobiol 655:99–108CrossRefGoogle Scholar
  67. Nir O, Gruber DF, Shemesh E, Glasser E, Tchernov D (2014) Seasonal mesophotic coral bleaching of Stylophora pistillata in the northern Red Sea. PlosOne 9:e84968CrossRefGoogle Scholar
  68. Oakley CA, Davy SK (2018) Cell Biology of Coral Bleaching. In: van Oppen MJH, Lough JM (eds) Coral Bleaching: Patterns, Processes, Causes and Consequences. Springer International Publishing, Cham, pp 189–211CrossRefGoogle Scholar
  69. Oliver JK, Berkelmans R, Eakin CM (2018) Coral Bleaching in Space and Time. In: van Oppen M, Lough J (eds) Coral Bleaching. Ecological Studies (Analysis and Synthesis), 233. Springer, ChamGoogle Scholar
  70. Olsen K, Ritson-Williams R, Ochrietor JD, Paul VJ, Ross C (2013) Detecting hyperthermal stress in larvae of the hermatypic coral Porites astreoides: the suitability of using biomarkers of oxidative stress versus heat shock protein transcriptional expression. Mar Biol 160:2609–2618CrossRefGoogle Scholar
  71. Osman EO, Smith DJ, Ziegler M, Kürten B, Conrad C, El-Haddad KM, Voolstra CR, Suggett DJ (2018) Thermal refugia against coral bleaching throughout the Northern Red Sea. Glob Change Biol 24:1013–1354CrossRefGoogle Scholar
  72. Papp E, Nardai G, Soti C, Csermely P (2003) Molecular chaperones, stress proteins and redox homeostasis. Biofactors 17:249–257PubMedCrossRefPubMedCentralGoogle Scholar
  73. Pinzón JH, Kamel B, Burge CA, Harvell CD, Medina M, Weil E, Mydlarz LD (2015) Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R Soc Open Sci 2:140214PubMedPubMedCentralCrossRefGoogle Scholar
  74. Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362:469–476PubMedCrossRefPubMedCentralGoogle Scholar
  75. Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C (2017) Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol 23:3838–3848PubMedCrossRefPubMedCentralGoogle Scholar
  76. Poli D, Fabbri E, Goffredo S, Airi V, Franzellitti S (2017) Physiological plasticity related to zonation affects hsp70 expression in the reef-building coral Pocillopora verrucosa. PloS One.  https://doi.org/10.1371/journal.pone.0171456 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Pratchett MS, McCowan D, Maynard JA, Scott F, Heron SF (2013) Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea. French Polynesia. PlosOne 8:e70443CrossRefGoogle Scholar
  78. Raitsos DE, Hoteit I, Prihartato PK, Chronis T, Triantafyllou G, Abualnaja Y (2011) Abrupt warming of the Red Sea. Geophys Res Lett 38:L14601CrossRefGoogle Scholar
  79. Ricaurte M, Schizas NV, Ciborowski P, Boukli NM (2016) Proteomic analysis of bleached and unbleached Acropora palmata, a threatened coral species of the Caribbean. Mar Pollut Bull 107:224–232PubMedPubMedCentralCrossRefGoogle Scholar
  80. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266PubMedCrossRefGoogle Scholar
  81. Riegl BM, Bruckner AW, Rowlands GP, Purkis SJ, Renaud P (2012) Red Sea coral reef trajectories over 2 decades suggest increasing community homogenization and decline in coral size. PlosOne 7:e38396CrossRefGoogle Scholar
  82. Robbart ML, Peckol P, Scordilis SP, Curran HA, Brown-Saracino J (2004) Population recovery and differential heat shock protein expression for the corals Agaricia agaricites and A. tenuifolia in Belize. Mar Ecol Prog Ser 283:151–160CrossRefGoogle Scholar
  83. Rodgers KS, Bahr KD, Jokiel PL, Donà AR (2017) Patterns of bleaching and mortality following widespread warming events in 2014 and 2015 at the Hanauma Bay Nature Preserve, Hawai `i. PeerJ 5:e3355PubMedPubMedCentralCrossRefGoogle Scholar
  84. Roik A, Röthig T, Ziegler M, Voolstra CR (2015) Coral bleaching event in the central Red Sea. Mideast Coral Reef Soc Newsl 3:3Google Scholar
  85. Rosic NN, Pernice M, Dove S, Dunn S, Hoegh-Guldberg O (2011) Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching. Cell Stress Chaperones 16:69–80PubMedCrossRefGoogle Scholar
  86. Rougée L, Downs CA, Richmond RH, Ostrander GK (2006) Alteration of normal cellular profiles in the scleractinian coral (Pocillopora damicornis) following laboratory exposure to fuel oil. Environ Toxicol Chem 25:3181–3187PubMedCrossRefGoogle Scholar
  87. Seneca FO, Foret S, Ball EE, Smith-Keune C, Miller DJ, van Oppen MJH (2010) Patterns of gene expression in a scleractinian coral undergoing natural bleaching. Mar Biotechnol 12:594–604PubMedCrossRefGoogle Scholar
  88. Seveso D, Montano S, Strona G, Orlandi I, Vai M, Galli P (2012) Up-regulation of Hsp60 in response to skeleton eroding band disease but not by algal overgrowth in the scleractinian coral Acropora muricata. Mar Environ Res 78:34-39PubMedCrossRefGoogle Scholar
  89. Seveso D, Montano S, Strona G, Orlandi I, Galli P, Vai M (2013) Exploring the effect of salinity changes on the levels of Hsp60 in the tropical coral Seriatopora caliendrum. Mar Environ Res 90:96–103PubMedCrossRefGoogle Scholar
  90. Seveso D, Montano S, Strona G, Orlandi I, Galli P, Vai M (2014) The susceptibility of corals to thermal stress by analyzing Hsp60 expression. Mar Environ Res 99:69–75PubMedCrossRefGoogle Scholar
  91. Seveso D, Montano S, Strona G, Orlandi I, Galli P, Vai M (2016) Hsp60 expression profiles in the reef-building coral Seriatopora caliendrum subjected to heat and cold shock regimes. Mar Environ Res 119:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  92. Seveso D, Montano S, Reggente MAL, Maggioni D, Orlandi I, Galli P, Vai M (2017) The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease. Cell Stress Chaperones 22:225–236CrossRefGoogle Scholar
  93. Seveso D, Montano S, Maggioni D, Pedretti F, Orlandi I, Galli P, Vai M (2018) Diel modulation of Hsp70 and Hsp60 in corals living in a shallow reef. Coral Reefs 37:801–806CrossRefGoogle Scholar
  94. Siebeck UE, Marshall NJ, Klueter A, Hoegh-Guldberg O (2006) Monitoring coral bleaching using a colour reference card. Coral Reefs 25:453–460CrossRefGoogle Scholar
  95. Siebeck UE, Logan D, Marshall NJ (2009) CoralWatch – a flexible coral bleaching monitoring tool for you and your group. Proc 11th Int Coral Reef Symposium 1:549–553Google Scholar
  96. Smith DJ, Suggett DJ, Baker NR (2005) Is photoinhibition of zooxanthellae photosynthesis the primary cause of thermal bleaching in corals? Global Change Biol 11:1–11CrossRefGoogle Scholar
  97. Stimson J, Sakai K, Sembali H (2002) Interspecific comparison of the symbiotic relationship in corals with high and low rates of bleaching-induced mortality. Coral reefs 21:409–421Google Scholar
  98. Sully S, Burkepile DE, Donovan MK, Hodgson G, van Woesik R (2019) A global analysis of coral bleaching over the past two decades. Nature communications 10:1264PubMedCentralCrossRefPubMedGoogle Scholar
  99. Tolleter D, Seneca François O, DeNofrio Jan C, Krediet Cory J, Palumbi Stephen R, Pringle John R, Grossman Arthur R (2013) Coral bleaching independent of photosynthetic activity. Curr Biol 23:1782–1786PubMedCrossRefGoogle Scholar
  100. Vai M, Popolo L, Alberghina L (1986) Immunological cross-reactivity of fungal and yeast plasma membrane H+-ATPase. FEBS Lett 206:135–141PubMedCrossRefGoogle Scholar
  101. Van Woesik R, Sakai K, Ganase A, Loya Y (2011) Revisiting the winners and the losers a decade after coral bleaching. Mar Ecol Prog Ser 434:67–76CrossRefGoogle Scholar
  102. Vidal-Dupiol J, Adjeroud M, Roger E, Foure L, Duval D, Mone Y, Ferrier-Pages C, Tambutte E, Tambutte S, Zoccola D, Allemand D, Mitta G (2009) Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC Physiology 9:14PubMedPubMedCentralCrossRefGoogle Scholar
  103. Voolstra CR, Schnetzer J, Peshkin L, Randall CJ, Szmant AM, Medina M (2009) Effects of temperature on gene expression in embryos of the coral Montastraea faveolata. BMC Genomics 10:627PubMedPubMedCentralCrossRefGoogle Scholar
  104. Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066PubMedCrossRefPubMedCentralGoogle Scholar
  105. Wooldridge SA (2014) Differential thermal bleaching susceptibilities amongst coral taxa: re-posing the role of the host. Coral Reefs 33:15–27CrossRefGoogle Scholar
  106. Xie JY, Lau DCC, Kei K, Yu VPF, Chow WK, Qiu JW (2017) The 2014 summer coral bleaching event in subtropical Hong Kong. Mar Pollut Bull 124:653–659PubMedCrossRefPubMedCentralGoogle Scholar
  107. Zhou M, Wu X, Ginsberg HN (1996) Evidence that a rapidly turning over protein, normally degraded by proteasomes, regulates hsp72 gene transcription in HepG2 cells. J Biol Chem 271:24769–24775PubMedCrossRefGoogle Scholar
  108. Ziegler M, Seneca FO, Yum LK, Palumbi SR, Voolstra CR (2017) Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat Commun 8:14213PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Davide Seveso
    • 1
    • 2
    Email author
  • Roberto Arrigoni
    • 3
    • 4
  • Simone Montano
    • 1
    • 2
  • Davide Maggioni
    • 1
    • 2
  • Ivan Orlandi
    • 5
  • Michael L. Berumen
    • 4
  • Paolo Galli
    • 1
    • 2
  • Marina Vai
    • 5
  1. 1.Department of Earth and Environmental Sciences (DISAT)University of Milan – BicoccaMilanItaly
  2. 2.MaRHE Center (Marine Research and High Education Center)Magoodhoo IslandRepublic of Maldives
  3. 3.European Commission, Joint Research Centre (JRC)IspraItaly
  4. 4.Red Sea Research Center, Division of Biological and Environmental Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  5. 5.Department of Biotechnologies and Biosciences (BTBS)University of Milan – BicoccaMilanItaly

Personalised recommendations