Skip to main content

Advertisement

Log in

Impact of growing up in a warmer, lower pH future on offspring performance: transgenerational plasticity in a pan-tropical sea urchin

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Transgenerational plasticity (TGP) may be an important mechanism for marine organisms to acclimate to climate change stressors including ocean warming (OW) and ocean acidification (OA). Conversely, environmental stress experienced by one generation may have detrimental latent effects on subsequent generations. We examined TGP in the embryos and larvae of the pan-tropical sea urchin, Tripneustes gratilla, in response to OA (pH 7.77), OW (+2 °C), or both OA and OW, OAW (+2 °C, pH 7.77) using a parent (F0) generation reared in treatments from the early juvenile to the mature adult, incorporating gonadogenesis and germline differentiation. Embryos and larvae of acclimated parents were reared in all four treatments to the 2-day-old pluteus stage. Larvae from OA and OAW parents were resilient to the effects of acidification, while larvae from OW and OAW parents were more tolerant to warmer temperature (29 °C). Parental acclimation, however, had predominantly negative effects on the size of offspring with reductions in larval arm lengths by as much as 21.4%, while eggs were up to 21.8% smaller in females raised at 29 °C. We highlight the complexity and trade-offs of TGP in this first transgenerational climate change study on a marine macroinvertebrate where the F0 generation was acclimated over their reproductive life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen JD (2008) Size-specific predation on marine invertebrate larvae. Biol Bull 214:42–49

    Article  PubMed  Google Scholar 

  • Allen JD (2012) Effects of egg size reductions on development time and juvenile size in three species of echinoid echinoderms: Implications for life history theory. J Exp Mar Bio Ecol 422–423:72–80

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Angellitta MJ, Steury TD, Sears MW (2004) Temperature, growth rate, and body size in ectotherms: fitting pieces of a life-history puzzle. Integr Comp Biol 44:498–509

    Article  Google Scholar 

  • Bell G (2013) Evolutionary rescue and the limits of adaptation. Philos Trans R Soc B Biol Sci 368:1–6

    Article  Google Scholar 

  • Bell G, Collins S (2008) Adaptation, extinction and global change. Evol Appl 1:3–16

    Article  PubMed  PubMed Central  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  • Bernardo J (1996a) Maternal effects in animal ecology. Am Zool 36:83–105

    Article  Google Scholar 

  • Bernardo J (1996b) The particular maternal effect of propagule size, especially egg size: patterns, models, quality of evidence and interpretations. Am Zool 36:216–236

    Article  Google Scholar 

  • Bonduriansky R, Crean AJ, Day T (2012) The implications of nongenetic inheritance for evolution in changing environments. Evol Appl 5:192–201

    Article  PubMed  Google Scholar 

  • Borges FO, Figueiredo C, Sampaio E, Rosa R, Grilo TF (2018) Transgenerational deleterious effects of ocean acidification on the reproductive success of a keystone crustacean (Gammarus locusta). Mar Environ Res 138:55–64

    Article  CAS  PubMed  Google Scholar 

  • Bronstein O, Kroh A, Miskelly AD, Smith SDA, Dworjanyn SA, Mos B, Byrne M (2019) Implications of range overlap in the commercially important pan-tropical sea urchin genus Tripneustes (Echinoidea: Toxopneustidae). Mar Biol 166:1–5

    Article  Google Scholar 

  • Burton T, Metcalfe NB (2014) Can environmental conditions experienced in early life influence future generations? Proc R Soc B 281:1–8

    Article  Google Scholar 

  • Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol 49:1–42

    Google Scholar 

  • Byrne M, Ho M, Koleits L (2013) Vulnerability of the calcifying larval stage of the Antarctic sea urchin Sterechinus newmayeri to near-future ocean acidification and warming. Glob Chang Biol 19:2264–2275

    Article  PubMed  Google Scholar 

  • Byrne M, Prowse TAA, Sewell MA, Dworjanyn S, Williamson JE, Vaïtilingon D (2008) Maternal provisioning for larvae and larval provisioning for juveniles in the toxopneustid sea urchin Tripneustes gratilla. Mar Biol 155:473–482

    Article  Google Scholar 

  • Byrne M, Selvakumaraswamy P, Ho MA, Woolsey E, Nguyen HD (2011) Sea urchin development in a global change hotspot, potential for southerly migration of thermotolerant propagules. Deep Res Part II Top Stud Oceanogr 58:712–719

    Article  CAS  Google Scholar 

  • Chakravarti LJ, Jarrold MD, Gibbin EM, Christen F, Massamba-N’Siala G, Blier PU, Calosi P (2016) Can trans-generational experiments be used to enhance species resilience to ocean warming and acidification? Evol Appl 9:1133–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevin LM, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: Towards a predictive theory. PLoS Biol 8:1–8

    Article  CAS  Google Scholar 

  • Clark D, Lamare M, Barker M (2009) Response of sea urchin pluteus larvae (Echinodermata: Echinoidea) to reduced seawater pH: a comparison among a tropical, temperate, and a polar species. Mar Biol 156:1125–1137

    Article  Google Scholar 

  • Delorme NJ, Sewell MA (2016) Effects of warm acclimation on physiology and gonad development in the sea urchin Evechinus chloroticus. Comp Biochem Physiol Part A 198:33–40

    Article  CAS  Google Scholar 

  • Derry AM, Arnott SE (2007) Adaptive reversals in acid rolerance in copepods from lakes recovering from historical stress. Ecol Appl 17:1116–1126

    Article  PubMed  Google Scholar 

  • Dickson A, Sabine C, Christian J (2007) Guide to best practices for ocean CO2 measurements. PICES Spec Publ 3:191

    Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res Part A Oceanogr Res Pap 34:1733–1743

    Article  CAS  Google Scholar 

  • Donelson JM, Salinas S, Munday PL, Shama LNS (2017) Transgenerational plasticity and climate change experiments: Where do we go from here? Glob Chang Biol 24:1–22

    Google Scholar 

  • Donelson JM, Wong M, Booth DJ, Munday PL (2016) Transgenerational plasticity of reproduction depends on rate of warming across generations. Evol Appl 9:1072–1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Dupont S, Dorey N, Stumpp M, Melzner F, Thorndyke M (2013) Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar Biol 160:1835–1843

    Article  CAS  Google Scholar 

  • Dworjanyn SA, Byrne M (2018) Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming. Proc R Soc B Biol Sci 285:1–10

    Google Scholar 

  • Eirin-Lopez JM, Putnam HM (2019) Marine environmental epigenetics. Annu Rev Mar Sci 11:335–368

    Article  Google Scholar 

  • Emlet RB (1983) Locomotion, drag, and the rigid skeleton of larval echinoderms. Biol Bull 164:433–445

    Article  Google Scholar 

  • Fernandez C, Boudouresque CF (2000) Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food. Mar Ecol Prog Ser 204:131–141

    Article  CAS  Google Scholar 

  • Foo SA, Byrne M, Gambi MC (2018) Residing at low pH matters, resilience of the egg jelly coat of sea urchins living at a CO2 vent site. Mar Biol 165:97

    Article  CAS  Google Scholar 

  • Gibbin EM, Massamba N’Siala G, Chakravarti LJ, Jarrold MD, Calosi P (2017) The evolution of phenotypic plasticity under global change. Sci Rep 7:1–8

    Article  CAS  Google Scholar 

  • Ho DH, Burggren WW (2010) Epigenetics and transgenerational transfer: a physiological perspective. J Exp Biol 213:3–16

    Article  CAS  PubMed  Google Scholar 

  • Hobday AJ, Pecl GT (2014) Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fish 24:415–425

    Article  Google Scholar 

  • Hoffmann AA, Sgró CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Hughes AD, Kelly MS, Barnes DKA, Catarino AI, Black KD (2006) The dual functions of sea urchin gonads are reflected in the temporal variations of their biochemistry. Mar Biol 148:789–798

    Article  Google Scholar 

  • Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, Baird AH, Baum JK, Berumen ML, Bridge TC, Claar DC, Eakin CM, Gilmour JP, Graham NAJ, Harrison H, Hobbs JPA, Hoey AS, Hoogenboom M, Lowe RJ, McCulloch MT, Pandolfi JM, Pratchett M, Schoepf V, Torda G, Wilson SK (2018) Spatial and temporal patterns of mass bleaching of corals in the anthropocene. Science (80-) 359:80–83

    Article  CAS  Google Scholar 

  • Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, Babcock RC, Beger M, Bellwood DR, Berkelmans R, Bridge TC, Butler IR, Byrne M, Cantin NE, Comeau S, Connolly SR, Cumming GS, Dalton SJ, Diaz-Pulido G, Eakin CM, Figueira WF, Gilmour JP, Harrison HB, Heron SF, Hoey AS, Hobbs JPA, Hoogenboom MO, Kennedy EV, Kuo CY, Lough JM, Lowe RJ, Liu G, McCulloch MT, Malcolm HA, McWilliam MJ, Pandolfi JM, Pears RJ, Pratchett MS, Schoepf V, Simpson T, Skirving WJ, Sommer B, Torda G, Wachenfeld DR, Willis BL, Wilson SK (2017) Global warming and recurrent mass bleaching of corals. Nature 543:373–377

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change

  • Karelitz SE, Uthicke S, Foo SA, Barker MF, Byrne M, Pecorino D, Lamare MD (2017) Ocean acidification has little effect on developmental thermal windows of echinoderms from Antarctica to the tropics. Glob Chang Biol 23:657–672

    Article  PubMed  Google Scholar 

  • Lamare MD, Barker MF (1999) In situ estimates of larval development and mortality in the New Zealand sea urchin Evechinus chloroticus (Echinodermata: Echinoidea). Mar Ecol Prog Ser 180:197–211

    Article  Google Scholar 

  • Lane A, Campanati C, Dupont S, Thiyagarajan V (2015) Trans-generational responses to low pH depend on parental gender in a calcifying tubeworm. Sci Rep 5:1–7

    CAS  Google Scholar 

  • Lawrence JM, Agatsuma Y (2013) Tripneustes. Sea Urchins: Biology and Ecology. Academic Press, Croydon, UK, pp 491–507

    Book  Google Scholar 

  • Lenton A, Mcinnes KL, Grady JGO (2015) Marine projections of warming and ocean acidification in the Australasian Region. Aust Meteorol Oceanogr J 65:S1–S28

    Article  Google Scholar 

  • Lister KN, Lamare MD, Burritt DJ (2015) Pollutant resilience in embryos of the Antarctic sea urchin Sterechinus neumayeri reflects maternal antioxidant status. Aquat Toxicol 161:61–72

    Article  CAS  PubMed  Google Scholar 

  • Lister KN, Lamare MD, Burritt DJ (2016) Dietary pollutants induce oxidative stress, altering maternal antioxidant provisioning and reproductive output in the temperate sea urchin Evichinus chloroticus. Aquat Toxicol 177:106–115

    Article  CAS  PubMed  Google Scholar 

  • Lister KN, Lamare MD, Burritt DJ (2017) Maternal antioxidant provisioning mitigates pollutant-induced oxidative damage in embryos of the temperate sea urchin Evichinus chloroticus. Sci Rep 1954:1–7

    Google Scholar 

  • Magnan AK, Colombier M, Billé R, Joos F, Hoegh-Guldberg O, Pörtner HO, Waisman H, Spencer T, Gattuso JP (2016) Implications of the Paris agreement for the ocean. Nat Clim Chang 6:732–735

    Article  Google Scholar 

  • Martinez G, Pérez H (2003) Effect of different temperature regimes on reproductive conditioning in the scallop Argopecten purpuratus. Aquaculture 228:153–167

    Article  Google Scholar 

  • McAlister JS, Moran AL (2012) Relationships among egg size, composition, and energy: a comparative study of geminate sea urchins. PLoS Biol 7:1–8

    Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Mos B, Byrne M, Cowden KL, Dworjanyn SA (2015) Biogenic acidification drives density-dependent growth of a calcifying invertebrate in culture. Mar Biol 162:1541–1558

    Article  CAS  Google Scholar 

  • Mos B, Byrne M, Dworjanyn SA (2016) Biogenic acidification reduces sea urchin gonad growth and increases susceptibility of aquaculture to ocean acidification. Mar Environ Res 113:39–48

    Article  CAS  PubMed  Google Scholar 

  • Mos B, Cowden KL, Nielsen SJ, Dworjanyn SA (2011) Do cues matter? Highly inductive settlement cues don’t ensure high post-settlement survival in sea urchin aquaculture. PLoS One 6

  • Mousseau T, Fox C (1998) The adaptive significance of maternal effects. Trends Ecol Evol 13:403–407

    Article  CAS  PubMed  Google Scholar 

  • Munday PL (2014) Transgenerational acclimation of fishes to climate change and ocean acidification. F1000Prime Rep 6:1–7

    Google Scholar 

  • Nakagawa S, Cuthill IC (2007) Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol Rev 82:591–605

    Article  PubMed  Google Scholar 

  • Okansen J, Blanchet F, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens M, Wagner H (2015) Vegan: community ecology package. R package version 2.3-0

  • Otero-Villanueva MDM, Kelly MS, Burnell G (2004) How diet influences energy partitioning in the regular echinoid Psammechinus miliaris; constructing an energy budget. J Exp Mar Bio Ecol 304:159–181

    Article  Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science (80-) 333:418–422

    Article  CAS  Google Scholar 

  • Parker LM, Connor WAO, Raftos DA, Pörtner H, Ross PM (2015) Persistence of positive carryover effects in the oyster, Saccostrea glomerata, following transgenerational exposure to ocean acidification. PLoS One 10:1–19

    Google Scholar 

  • Parker LM, O’Connor WA, Byrne M, Coleman RA, Virtue P, Dove M, Gibbs M, Spohr L, Scanes E, Ross PM (2017) Adult exposure to ocean acidification is maladaptive for larvae of the Sydney rock oyster Saccostrea glomerata in the presence of multiple stressors. Biol Lett 13:1–5

    CAS  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA, Borysko L, Raftos DA, Pörtner HO (2012) Adult exposure influences offspring response to ocean acidification in oysters. Glob Chang Biol 18:82–92

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and Evolutionary Responses to Recent Climate Change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pecl GT, Araújo MB, Bell JD, Blanchard J, Bonebrake TC, Chen IC, Clark TD, Colwell RK, Danielsen F, Evengård B, Falconi L, Ferrier S, Frusher S, Garcia RA, Griffis RB, Hobday AJ, Janion-Scheepers C, Jarzyna MA, Jennings S, Lenoir J, Linnetved HI, Martin VY, McCormack PC, McDonald J, Mitchell NJ, Mustonen T, Pandolfi JM, Pettorelli N, Popova E, Robinson SA, Scheffers BR, Shaw JD, Sorte CJB, Strugnell JM, Sunday JM, Tuanmu MN, Vergés A, Villanueva C, Wernberg T, Wapstra E, Williams SE (2017) Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355:1–9

    Article  CAS  Google Scholar 

  • Pedersen SA, Håkedal OJ, Salaberria I, Tagliati A, Gustavson LM, Jenssen BM, Olsen AJ, Altin D (2014) Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates. Environ Sci Technol 48:12275–12284

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Team RC (2018) Linear and nonlinear mixed effects models. R Package version 3.1–140

  • Prowse TAA, Sewell MA, Byrne M (2017) Three-stage lipid dynamics during development of planktotrophic echinoderm larvae. Mar Ecol Prog Ser 583:149–161

    Article  CAS  Google Scholar 

  • Putnam HM, Gates RD (2015) Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J Exp Biol 218:2365–2372

    Article  PubMed  Google Scholar 

  • Rahman S, Tsuchiya M, Uehara T (2009) Effects of temperature on hatching rate, embryonic development and early larval survival of the edible sea urchin, Tripneustes gratilla. Biologia (Bratisl) 64:768–775

    Article  Google Scholar 

  • Robbins L, Hansen M, Kleypas J, Meylan S (2010) CO2calc: a user-friendly carbon calculator for windows, Mac OS X, and iOS (iPhone): US Geol suvey open file Rep 2010–1280

  • Rodríguez-Romero A, Jarrold MD, Massamba-N’Siala G, Spicer JI, Calosi P (2016) Multi-generational responses of a marine polychaete to a rapid change in seawater pCO2. Evol Appl 9:1082–1095

    Article  PubMed  CAS  Google Scholar 

  • Ross PM, Parker L, Byrne M (2016) Transgenerational responses of molluscs and echinoderms to changing ocean conditions. ICES J Mar Sci 73:537–549

    Article  Google Scholar 

  • Russell MP (1998) Resource allocation plasticity in sea urchins: rapid, diet induced, phenotypic changes in the green sea urchin, Strongylocentrotus droebachiensis (Müller). J Exp Mar Bio Ecol 220:1–14

    Article  Google Scholar 

  • Salinas S, Brown SC, Mangel M, Munch SB (2013) Non-genetic inheritance and changing environments. Non-Genetic Inherit 1:38–50

    Article  Google Scholar 

  • Schneider C, Rasband W, Eliceiri K (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shama L, Wegner K (2014) Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations. Evol Biol 27:2297–2307

    Article  CAS  Google Scholar 

  • Shama LNS, Mark FC, Strobel A, Lokmer A, John U, Mathias Wegner K (2016) Transgenerational effects persist down the maternal line in marine sticklebacks: gene expression matches physiology in a warming ocean. Evol Appl 9:1096–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shama LNS, Strobel A, Mark FC, Wegner KM (2014) Transgenerational plasticity in marine sticklebacks: Maternal effects mediate impacts of a warming ocean. Funct Ecol 28:1482–1493

    Article  Google Scholar 

  • Sheppard Brennand H, Soars N, Dworjanyn SA, Davis AR, Byrne M (2010) Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS One 5:1–7

    Article  CAS  Google Scholar 

  • Shu L, Suter MJF, Laurila A, Räsänen K (2015) Mechanistic basis of adaptive maternal effects: egg jelly water balance mediates embryonic adaptation to acidity in Rana arvalis. Oecologia 179:617–628

    Article  PubMed  Google Scholar 

  • Strathmann RR (1975) Larval feeding in echinoderms. Am Zool 15:717–730

    Google Scholar 

  • Suckling CC, Clark MS, Beveridge C, Brunner L, Hughes D, Harper EM, Cook EJ, Davies AJ, Peck S, Suckling CC, Clark MS, Beveridge C, Brunner L, Hughes AD, Harper EM, Cook EJ, Davies AJ, Peck LS (2014) Experimental influence of pH on the early life-stages of sea urchins II: increasing parental exposure times gives rise to different responses. Invertebr Reprod Dev 58:161–175

    Article  CAS  Google Scholar 

  • Suckling CC, Clark MS, Richard J, Morley SA, Thorne MAS, Harper EM, Peck LS (2015) Adult acclimation to combined temperature and pH stressors significantly enhances reproductive outcomes compared to short-term exposures. J Anim Ecol 84:773–784

    Article  PubMed  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob Chang Biol 21:2261–2271

    Article  PubMed  Google Scholar 

  • Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, Bourne DG, Cantin N, Foret S, Matz M, Miller DJ, Moya A, Putnam HM, Ravasi T, Van Oppen MJH, Thurber RV, Vidal-Dupiol J, Voolstra CR, Watson SA, Whitelaw E, Willis BL, Munday PL (2017) Rapid adaptive responses to climate change in corals. Nat Clim Chang 7:627–636

    Article  Google Scholar 

  • Utting S, Millican P (1997) Techniques for the hatchery conditioning of bivalve broodstocks and the subsequent effect on egg quality and larval viability. Aquaculture 155:45–55

    Article  Google Scholar 

  • Uthicke S, Soars N, Foo S, Byrne M (2013) Effects of elevated pCO2 and the effect of parent acclimation on development in the tropical Pacific sea urchin Echinometra mathaei. Mar Biol 160:1913–1926

    Article  CAS  Google Scholar 

  • Uthicke S, Liddy M, Nguyen HD, Byrne M (2014) Interactive effects of near-future temperature increase and ocean acidification on physiology and gonad development in adult Pacific sea urchin, Echinometra sp. A. Coral Reefs 33:831–845

    Article  Google Scholar 

  • Wong JM, Kozal LC, Leach TS, Hoshijima U, Hofmann GE (2019) Transgenerational effects in an ecological context: conditioning of adult sea urchins to upwelling conditions alters maternal provisioning and progeny phenotype. J Exp Mar Bio Ecol 517:65–77

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Australian Research Council (MB, SD) and the NSW Environmental Research Trust as well as a PhD scholarship from the University of Otago (SK). The authors would like to thank Eliot Hanrio and Huang-An Li as well as Rich Grainger and Dione Deaker for their assistance in the laboratory. We also thank the National Marine Science Centre at Southern Cross University for their logistical support. This is contribution number 250 of the Sydney Institute of Marine Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Karelitz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topic Editor Alastair Harborne

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1053 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karelitz, S., Lamare, M.D., Mos, B. et al. Impact of growing up in a warmer, lower pH future on offspring performance: transgenerational plasticity in a pan-tropical sea urchin. Coral Reefs 38, 1085–1095 (2019). https://doi.org/10.1007/s00338-019-01855-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-019-01855-z

Keywords

Navigation