Coral Reefs

, Volume 38, Issue 2, pp 177–198 | Cite as

Oxygen: the universal currency on coral reefs

  • Hannah R. NelsonEmail author
  • Andrew H. Altieri


Coral reefs are suffering unprecedented declines worldwide. Most studies focus on stressors such as rising temperatures, nutrient pollution, overfishing, and ocean acidification as drivers of this degradation. However, recent mass mortality events associated with low oxygen on coral reefs indicate that oxygen is a critical factor that can be limiting in reef environments. Here, we present evidence that integrates across disciplines and perspectives to reveal how natural and anthropogenic factors drive variation in oxygen at multiple scales on coral reefs. This variation, in turn, limits essential processes such as productivity, respiration, and calcification on reefs and often plays a role in the outcome of interactions between corals and their competitors, pathogens, and mutualists. Moreover, the apparent effects of temperature, eutrophication, acidification, and other stressors on corals are commonly mediated by oxygen. As a consequence, the imprint of oxygen variation is evident in many patterns including reef biodiversity, coral bleaching, colony morphology, and fish behavior. We suggest that the structure and dynamics of coral reefs can be fully understood only by considering the ubiquitous role of oxygen, and we identify critical areas of future oxygen research to guide the study and management of coral reefs in a changing world.


Bleaching Calcification Climate change Dead zones Hyperoxia Hypoxia 



We thank two anonymous reviewers for comments on earlier versions of this paper. This research was supported by the Smithsonian Tropical Research Institute.

Supplementary material

338_2019_1765_MOESM1_ESM.docx (211 kb)
Supplementary material 1 (DOCX 211 kb)


  1. Abram NJ, Gagan MK, McCulloch MT, Chappell J, Hantoro WS (2003) Coral reef death during the 1997 Indian Ocean dipole linked to Indonesian wildfires. Science 301:952–955CrossRefPubMedGoogle Scholar
  2. Adjeroud M, Andréfouët S, Payri C (2001) Mass mortality of macrobenthic communities in the lagoon of Hikueru atoll (French Polynesia). Coral Reefs 19:287–291CrossRefGoogle Scholar
  3. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003a) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426CrossRefGoogle Scholar
  4. Al-Horani FA, Al-Moghrabi SM, de Beer D (2003b) Microsensor study of photosynthesis and calcification in the scleractinian coral, Galaxea fascicularis: active internal carbon cycle. J Exp Mar Bio Ecol 142:419–426CrossRefGoogle Scholar
  5. Al-Horani FA, Tambutté É, Allemand D (2007) Dark calcification and the daily rhythm of calcification in the scleractinian coral, Galaxea fascicularis. Coral Reefs 26:531–538CrossRefGoogle Scholar
  6. Albert S, O’Neil JM, Udy JW, Ahern KS, O’Sullivan CM, Dennison WC (2005) Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: disparate sites, common factors. Mar Pollut Bull 51:428–437CrossRefPubMedGoogle Scholar
  7. Albert S, Grinham A, Dunbabin M, Bird B, Moore BR, Jimuru M, Kwatelae A, Skinner M (2011) Preliminary assessment of a large fish kill in Marovo Lagoon, Solomon Islands. University of Queensland, BrisbaneGoogle Scholar
  8. Albert S, Dunbabin M, Skinner M (2012) Benthic Shift in a Solomon Island’s lagoon: corals to cyanobacteria. In: Proceedings of the 12th International Coral Reef Symposium. Cairns, AustraliaGoogle Scholar
  9. Allemand D, Tambutté É, Zoccola D, Tambutté S (2010) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 113–119Google Scholar
  10. Altieri AH, Gedan KB (2015) Climate change and dead zones. Glob Chang Biol 21:1395–1406CrossRefPubMedGoogle Scholar
  11. Altieri AH, Harrison SB, Seemann J, Collin R, Diaz RJ, Knowlton N (2017) Tropical dead zones and mass mortalities on coral reefs. Proc Natl Acad Sci U S A 114:3660–3665CrossRefPubMedPubMedCentralGoogle Scholar
  12. Altieri AH, Nelson HR, Gedan KB (in review) Ocean deoxygenation: everyone’s problem – Causes, impacts, consequences and solutions. IUCN, Gland, SwitzerlandGoogle Scholar
  13. Andersson AJ, Gledhill D (2013) Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification. Ann Rev Mar Sci 5:321–348CrossRefPubMedGoogle Scholar
  14. Andréfouët S, Van Wynsberge S, Gaertner-Mazouni N, Menkes C, Gilbert A, Remoissenet G (2013) Climate variability and massive mortalities challenge giant clam conservation and management efforts in French Polynesia atolls. Biol Conserv 160:190–199CrossRefGoogle Scholar
  15. Andréfouët S, Dutheil C, Menkes CE, Bador M, Lengaigne M (2015) Mass mortality events in atoll lagoons: environmental control and increased future vulnerability. Glob Chang Biol 21:195–205CrossRefPubMedGoogle Scholar
  16. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol 55:373–399CrossRefPubMedGoogle Scholar
  17. Baas Becking LGM (1951) Notes on some Cyanophyceae of the Pacific region. Proc K Ned Akad Wet C 54:213–225Google Scholar
  18. Banner AH (1968) A fresh-water” kill” on the coral reefs of Hawaii. Hawaii Institute of Marine Biology, University of Hawaii, Honolulu, HIGoogle Scholar
  19. Barott KL, Rohwer FL (2012) Unseen players shape benthic competition on coral reefs. Trends Microbiol 20:621–628CrossRefPubMedGoogle Scholar
  20. Barott K, Smith J, Dinsdale E, Hatay M, Sandin S, Rohwer F (2009) Hyperspectral and physiological analyses of coral–algal interactions. PLoS One 4:e8043CrossRefPubMedPubMedCentralGoogle Scholar
  21. Barott KL, Rodriguez-Mueller B, Youle M, Marhaver KL, Vermeij MJ, Smith JE, Rohwer FL (2011) Microbial to reef scale interactions between the reef-building coral Montastraea annularis and benthic algae. Proc R Soc Lond B Biol Sci 279:1654–1655Google Scholar
  22. Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci U S A 110:1387–1392CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bell GW, Eggleston DB, Wolcott TG (2003) Behavioral responses of free-ranging blue crabs to episodic hypoxia. II. Feeding. Mar Ecol Prog Ser 259:227–235CrossRefGoogle Scholar
  24. Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429:827–833CrossRefPubMedGoogle Scholar
  25. Best MA, Wither AW, Coates S (2007) Dissolved oxygen as a physico-chemical supporting element in the Water Framework Directive. Mar Pollut Bull 55:53–64CrossRefPubMedGoogle Scholar
  26. Bowman TE, Lancaster LJ (1965) A bloom of the planktonic blue-green alga, Trichodesmium erythraeum, in the Tonga Islands. Limnol and Oceanogr 10:291–293CrossRefGoogle Scholar
  27. Bozinovic F, Pörtner HO (2015) Physiological ecology meets climate change. Ecol Evol 5:1025–1030CrossRefPubMedPubMedCentralGoogle Scholar
  28. Brocke HJ, Wenzhoefer F, De Beer D, Mueller B, Van Duyl FC, Nugues MM (2015) High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Sci Rep 5:8852CrossRefPubMedPubMedCentralGoogle Scholar
  29. Brown AL, Carpenter RC (2013) Water-flow mediated oxygen dynamics within massive Porites-algal turf interactions. Mar Ecol Prog Ser 490:1–10CrossRefGoogle Scholar
  30. Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789CrossRefGoogle Scholar
  31. Bruno JF, Selig ER (2007) Regional decline of coral cover in the Indo-Pacific: timing, extent, and subregional comparisons. PLoS One 2:e711CrossRefPubMedPubMedCentralGoogle Scholar
  32. Carlton RG, Richardson LL (1995) Oxygen and sulfide dynamics in a horizontally migrating cyanobacterial mat: black band disease of corals. FEMS Microbiol Ecol 18:155–162CrossRefGoogle Scholar
  33. Chalker BE, Taylor DL (1975) Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis. Proc R Soc Lond B Biol Sci 190:323–331CrossRefPubMedGoogle Scholar
  34. Chamberlain JA Jr, Graus RR (1975) Water flow and hydromechanical adaptations of branched reef corals. Bull Mar Sci 25:112–125Google Scholar
  35. Charpy L, Casareto BE, Langlade MJ, Suzuki Y (2012) Cyanobacteria in coral reef ecosystems: a review. J Mar Biol 2012:259571CrossRefGoogle Scholar
  36. Cinner JE, Huchery C, MacNeil MA, Graham NA, McClanahan TR, Maina J, Maire E, Kittinger JN, Hicks CC, Mora C, Allison EH, D’Agata S, Hoey A, Feary DA, Crowder L, Williams ID, Kulbicki M, Vigliola L, Wantiez L, Edgar G, Stuart-Smith RD, Sandin SA, Green AL, Hardt MJ, Beger M, Friedlander A, Campbell SJ, Holmes KE, Wilson SK, Brokovich E, Brooks AJ, Cruz-Motta JJ, Booth DJ, Chabanet P, Gough C, Tupper M, Ferse SCA, Sumaila UR, Mouillot D (2016) Bright spots among the world’s coral reefs. Nature 535:416–419CrossRefPubMedGoogle Scholar
  37. Clavier J, Chauvaud L, Cuet P, Esbelin C, Frouin P, Taddei D, Thouzeau G (2008) Diel variation of benthic respiration in a coral reef sediment (Reunion Island, Indian Ocean). Estuar Coast Shelf Sci 76:369–377CrossRefGoogle Scholar
  38. Cohen AL, Holcomb M (2009) Why corals care about ocean acidification: uncovering the mechanism. Oceanography 22:118–127CrossRefGoogle Scholar
  39. Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907CrossRefGoogle Scholar
  40. de Beer D, Kühl M, Stambler N, Vaki L (2000) A microsensor study of light enhanced Ca2+ uptake and photosynthesis in the reef-building hermatypic coral Favia sp. Mar Ecol Prog Ser 194:75–85CrossRefGoogle Scholar
  41. Dennison WC, Barnes DJ (1988) Effect of water motion on coral photosynthesis and calcification. J Exp Mar Bio Ecol 115:67–77CrossRefGoogle Scholar
  42. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929CrossRefGoogle Scholar
  43. Diehl WJ, McEdward L, Proffitt E, Rosenberg V, Lawrence JM (1979) The response of Luidia clathrata (Echinodermata: Asteroidea) to hypoxia. Comp Biochem Physiol A Physiol 62:669–671CrossRefGoogle Scholar
  44. Dinsdale EA, Rohwer F (2011) Fish or germs? Microbial dynamics associated with changing trophic structures on coral reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Netherlands, pp 231–240CrossRefGoogle Scholar
  45. Dodds LA, Roberts JM, Taylor AC, Marubini F (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Bio Ecol 349:205–214CrossRefGoogle Scholar
  46. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192CrossRefPubMedGoogle Scholar
  47. Dupont JM, Hallock-Muller P, Jaap WC (2010) Ecological impacts of the 2005 red tide on artificial reef epibenthic macroinvertebrate and fish communities in the eastern Gulf of Mexico. Mar Ecol Prog Ser 415:189–200CrossRefGoogle Scholar
  48. Dykens JA, Shick JM (1982) Oxygen production by endosymbiotic algae controls superoxide dismutase activity in their animal host. Nature 297:579–580CrossRefGoogle Scholar
  49. Dykens JA, Shick JM, Benoit C, Buettner GR, Winston GW (1992) Oxygen radical production in the sea anemone Anthopleura elegantissima and its endosymbiotic algae. J Exp Biol 168:219–241Google Scholar
  50. Ellington WR (1982) Metabolic responses of the sea anemone Bunodosoma cavernata (Bosc) to declining oxygen tensions and anoxia. Physiol Zool 55:240–249CrossRefGoogle Scholar
  51. Finelli CM, Helmuth BS, Pentcheff ND, Wethey DS (2006) Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs 25:47–57CrossRefGoogle Scholar
  52. Ford AK, Bejarano S, Nugues MM, Visser PM, Albert S, Ferse SC (2018) Reefs under siege—the rise, putative drivers, and consequences of benthic cyanobacterial mats. Front Mar Sci 5:18CrossRefGoogle Scholar
  53. Fridovich I (1977) Oxygen is toxic! Bioscience 27:462–466CrossRefGoogle Scholar
  54. Fridovich I (1978) The biology of oxygen radicals. Science 201:875–880CrossRefPubMedGoogle Scholar
  55. Garcia-Herrera N, Ferse SC, Kunzmann A, Genin A (2017) Mutualistic damselfish induce higher photosynthetic rates in their host coral. J Exp Biol 220:1803–1811CrossRefPubMedGoogle Scholar
  56. Gardella DJ, Edmunds PJ (1999) The oxygen microenvironment adjacent to the tissue of the scleractinian Dichocoenia stokesii and its effects on symbiont metabolism. Mar Biol 135:289–295CrossRefGoogle Scholar
  57. Gardner TA, Côté IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960CrossRefPubMedGoogle Scholar
  58. Genin A, Lazar B, Brenner S (1995) Vertical mixing and coral death in the Red Sea following the eruption of Mount Pinatubo. Nature 377:507–510CrossRefGoogle Scholar
  59. Glas MS, Sato Y, Ulstrup KE, Bourne DG (2012) Biogeochemical conditions determine virulence of black band disease in corals. ISME J 6:1526–1534CrossRefPubMedPubMedCentralGoogle Scholar
  60. Goldshmid R, Holzman R, Weihs D, Genin A (2004) Aeration of corals by sleep-swimming fish. Limnol Oceanogr 49:1832–1839CrossRefGoogle Scholar
  61. Gordin H (2000) Environmental effects of mariculture in the Gulf of Eilat. Ecology and Environment 6:124–127 [In Hebrew] Google Scholar
  62. Green EP, Bruckner AW (2000) The significance of coral disease epizootiology for coral reef conservation. Biol Conserv 96:347–361CrossRefGoogle Scholar
  63. Gregg AK, Hatay M, Haas AF, Robinett NL, Barott K, Vermeij MJA, Marhaver KL, Meirelles P, Thompson F, Rohwer F (2013) Biological oxygen demand optode analysis of coral reef-associated microbial communities exposed to algal exudates. PeerJ 1:e107CrossRefPubMedPubMedCentralGoogle Scholar
  64. Guzmán HM, Cortés J, Glynn PW, Richmond RH (1990) Coral mortality associated with dinoflagellate blooms in the eastern Pacific (Costa Rica and Panama). Mar Ecol Prog Ser 60:299–303CrossRefGoogle Scholar
  65. Haas AF, Naumann MS, Struck U, Mayr C, el-Zibdah M, Wild C (2010a) Organic matter release by coral reef associated benthic algae in the Northern Red Sea. J Exp Mar Bio Ecol 389:53–60CrossRefGoogle Scholar
  66. Haas AF, Jantzen C, Naumann MS, Iglesias-Prieto R, Wild C (2010b) Organic matter release by the dominant primary producers in a Caribbean reef lagoon: implication for in situ O2 availability. Mar Ecol Prog Ser 409:27–39CrossRefGoogle Scholar
  67. Haas AF, Nelson CE, Kelly LW, Carlson CA, Rohwer F, Leichter JJ, Wyatt A, Smith JE (2011) Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PloS One 6:e27973CrossRefPubMedPubMedCentralGoogle Scholar
  68. Haas AF, Gregg AK, Smith JE, Abieri ML, Hatay M, Rohwer F (2013) Visualization of oxygen distribution patterns caused by coral and algae. PeerJ 1:e106CrossRefPubMedPubMedCentralGoogle Scholar
  69. Haas AF, Smith JE, Thompson M, Deheyn DD (2014) Effects of reduced dissolved oxygen concentrations on physiology and fluorescence of hermatypic corals and benthic algae. PeerJ 2:e235CrossRefPubMedPubMedCentralGoogle Scholar
  70. Haas AF, Fairoz MF, Kelly LW, Nelson CE, Dinsdale EA, Edwards RA, Giles S, Hatay M, Hisakawa N, Knowles B, Lim YW (2016) Global microbialization of coral reefs. Nat Microbiol 1:16042CrossRefPubMedGoogle Scholar
  71. Harland AD, Davies PS (1995) Symbiont photosynthesis increases both respiration and photosynthesis in the symbiotic sea anemone Anemonia viridis. Mar Biol 123:715–722CrossRefGoogle Scholar
  72. Harper SL, Reiber C (1999) Influence of hypoxia on cardiac functions in the grass shrimp (Palaemonetes pugio Holthuis). Comp Biochem Physiol A Comp Physiol 124:569–573CrossRefGoogle Scholar
  73. Harris P, Fichez R (1995) Observations et mécanismes de la crise dystrophique de 1994 dans le lagon de l’atoll d’Hikueru (Archipel des Tuamotu, Polynésie Française) [Observations and mechanisms of the 1994 dystrophic crisis in the lagoon of the Hikueru atoll (Tuamotu Archipelago, French Polynesia]. Technical Report 45, Centre ORSTOM de Tahiti, Notes & Documents Océanographie, Papeete, Tahiti, French Polynesia [In French]Google Scholar
  74. Helmuth B, Sebens K (1993) The influence of colony morphology and orientation to flow on particle capture by the scleractinian coral Agaricia agaricites (Linnaeus). J Exp Mar Bio Ecol 165:251–278CrossRefGoogle Scholar
  75. Hobbs JPA, Macrae H (2012) Unusual weather and trapped coral spawn lead to fish kill at a remote coral atoll. Coral Reefs 31:961–961CrossRefGoogle Scholar
  76. Hobbs J, McDonald CA (2010) Increased seawater temperature and decreased dissolved oxygen triggers fish kill at the Cocos (Keeling) Islands, Indian Ocean. J Fish Biol 77:1219–1229CrossRefPubMedGoogle Scholar
  77. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742CrossRefPubMedGoogle Scholar
  78. Hughes TP (1994) Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265:1547–1551CrossRefPubMedGoogle Scholar
  79. Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933CrossRefPubMedGoogle Scholar
  80. IPCC (2013) The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UKGoogle Scholar
  81. Jamieson D, Chance B, Cadenas E, Boveris A (1986) The relation of free radical production to hyperoxia. Annu Rev Physiol 48:703–719CrossRefPubMedGoogle Scholar
  82. Jokiel PL (1978) Effects of water motion on reef corals. J Exp Mar Bio Ecol 35:87–97CrossRefGoogle Scholar
  83. Jokiel PL, Hunter CL, Taguchi S, Watarai L (1993) Ecological impact of a fresh-water “reef kill” in Kaneohe Bay, Oahu. Hawaii. Coral Reefs 12:177–184CrossRefGoogle Scholar
  84. Jordan DB, Ogren WL (1981) Species variation in the specificity of ribulose biphosphate carboxylase/oxygenase. Nature 291:513–515CrossRefGoogle Scholar
  85. Jørgensen BB, Revsbech NP (1985) Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol Oceanogr 30:111–122CrossRefGoogle Scholar
  86. Jorissen H, Skinner C, Osinga R, de Beer D, Nugues NM (2016) Evidence for water-mediated mechanisms in coral–algal interactions. Proc R Soc Lond B Biol Sci 283:20161137CrossRefGoogle Scholar
  87. Kassahn KS, Caley MJ, Ward AC, Connolly AR, Stone G, Crozier RH (2007) Heterologous microarray experiments used to identify the early gene response to heat stress in a coral reef fish. Mol Ecol 16:1749–1763CrossRefPubMedGoogle Scholar
  88. Kinsey DW, Kinsey E (1967) Diurnal changes in oxygen content of the water over the coral reef platform at Heron I. Mar Freshw Res 18:23–34CrossRefGoogle Scholar
  89. Kraines S, Suzuki Y, Yamada K, Komiyama H (1996) Separating biological and physical changes in dissolved oxygen concentration in a coral reef. Limnol Oceanogr 41:1790–1799CrossRefGoogle Scholar
  90. Kuempel CD, Altieri AH (2017) The emergent role of small-bodied herbivores in pre-empting phase shifts on degraded coral reefs. Sci Rep 7:39670CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kühl M, Cohen Y, Dalsgaard T, Jørgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for 02, pH and light. Mar Ecol Prog Ser 117:159–172CrossRefGoogle Scholar
  92. Laboy-Nieves EN, Klein E, Conde JE, Losada F, Cruz JJ, Bone D (2001) Mass mortality of tropical marine communities in Morrocoy, Venezuela. Bull Mar Sci 68:163–179Google Scholar
  93. Lapointe BE (1997) Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol Oceanogr 42:1119–1131CrossRefGoogle Scholar
  94. Lapointe BE, Matzie WR (1996) Effects of stormwater nutrient discharges on eutrophication processes in nearshore waters of the Florida Keys. Estuaries Coast 19:422–435CrossRefGoogle Scholar
  95. Lapointe BE, Barile PJ, Littler MM, Littler DS, Bedford BJ, Gasque C (2005) Macroalgal blooms on southeast Florida coral reefs: I. Nutrient stoichiometry of the invasive green alga Codium isthmocladum in the wider Caribbean indicates nutrient enrichment. Harmful Algae 4:1092–1105CrossRefGoogle Scholar
  96. Lefevre S, Watson SA, Munday PL, Nilsson GE (2015) Will jumping snails prevail? Influence of near-future CO2, temperature and hypoxia on respiratory performance in the tropical conch Gibberulus gibberulus gibbosus. J Exp Biol 218:2991–3001CrossRefPubMedGoogle Scholar
  97. Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377CrossRefGoogle Scholar
  98. Lesser MP, Shick JM (1989) Effects of irradiance and ultraviolet radiation on photoadaptation in the zooxanthellae of Aiptasia pallida: primary production, photoinhibition, and enzymic defenses against oxygen toxicity. Mar Biol 102:243–255CrossRefGoogle Scholar
  99. Lesser MP (1996) Elevated temperatures and ultraviolet radiation cause oxidative stress and inhibit photosynthesis in symbiotic dinoflagellates. Limnol Oceanogr 41:271–283CrossRefGoogle Scholar
  100. Lesser MP (1997) Oxidative stress causes coral bleaching during exposure to elevated temperatures. Coral Reefs 16:187–192CrossRefGoogle Scholar
  101. Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Bio Ecol 300:217–252CrossRefGoogle Scholar
  102. Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278CrossRefPubMedPubMedCentralGoogle Scholar
  103. Lesser MP, Stochaj WR, Tapley DW, Schick JM (1990) Bleaching in coral reef anthozoans: effects of irradiance, ultraviolet radiation, and temperature on the activities of protective enzymes against active oxygen. Coral Reefs 8:225–232CrossRefGoogle Scholar
  104. Liberman T, Genin A, Loya Y (1995) Effects on growth and reproduction of the coral Stylophora pistillata by the mutualistic damselfish Dascyllus marginatus. Marine Biology 121:741–746CrossRefGoogle Scholar
  105. Llanso RJ, Diaz RJ (1994) Tolerance to low dissolved oxygen by the tubicolous polychaete Loimia medusa. J Mar Biol Assoc U.K. 74:143–148CrossRefGoogle Scholar
  106. Loya Y (2004) The coral reefs of Eilat—past, present and future: three decades of coral community structure studies. In: Rosenberg E, Loya Y (eds) Coral Health and Disease. Springer, Berlin/Heidelberg, Germany, pp 1–34Google Scholar
  107. Lushchak VI, Bagnyukova TV (2006) Effects of different environmental oxygen levels on free radical processes in fish. Comp Biochem Physiol B 144:283–289CrossRefPubMedGoogle Scholar
  108. Mangum C, Van Winkle W (1973) Responses of aquatic invertebrates to declining oxygen conditions. Am Zool 13:529–541CrossRefGoogle Scholar
  109. Marshall AT, Clode PL (2003) Light-regulated Ca2+ uptake and O2 secretion at the surface of a scleractinian coral Galaxea fascicularis. Comp Biochem Physiol A Comp Physiol 136:417–426CrossRefGoogle Scholar
  110. Mass T, Genin A, Shavit U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs by increasing the efflux of oxygen from the organism to the water. Proc Natl Acad Sci U S A 107:2527–2531CrossRefPubMedPubMedCentralGoogle Scholar
  111. Mayer AG (1917) Is Death from High Temperature Due to the Accumulation of Acid in the Tissues? Proc Natl Acad Sci U S A 3:626–627CrossRefPubMedPubMedCentralGoogle Scholar
  112. McManus JW (1997) Tropical marine fisheries and the future of coral reefs: a brief review with emphasis on Southeast Asia. Coral Reefs 16:S121–S127CrossRefGoogle Scholar
  113. Mehler AH (1951) Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other hill reagents. Arch Biochem Biophys 33:65–77CrossRefPubMedGoogle Scholar
  114. Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MA, Bange HW, Hansen HP, Körtzinger A (2013) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 160:1875–1888CrossRefGoogle Scholar
  115. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefGoogle Scholar
  116. Mueller CA, Seymour RS (2011) The regulation index: a new method for assessing the relationship between oxygen consumption and environmental oxygen. Physiol Biochem Zool 84:522–532CrossRefPubMedGoogle Scholar
  117. Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish (Oxf) 9:261–285CrossRefGoogle Scholar
  118. Murphy JW, Richmond RH (2016) Changes to coral health and metabolic activity under oxygen deprivation. PeerJ 4:e1956CrossRefPubMedPubMedCentralGoogle Scholar
  119. Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition. Mar Biol 100:185–193CrossRefGoogle Scholar
  120. Nakamura T, Van Woesik R (2001) Water-flow rates and passive diffusion partially explain differential survival of corals during the 1998 bleaching event. Mar Ecol Prog Ser 212:301–304CrossRefGoogle Scholar
  121. Naumann MS, Haas A, Struck U, Mayr C, el-Zibdah M, Wild C (2010) Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29:649–659CrossRefGoogle Scholar
  122. Nelson HR, Kuempel CD, Altieri AH (2016) The resilience of reef invertebrate biodiversity to coral mortality. Ecosphere 7:e1399Google Scholar
  123. Niggl W, Haas AF, Wild C (2010) Benthic community composition affects O2 availability and variability in a Northern Red Sea fringing reef. Hydrobiologia 644:401–405CrossRefGoogle Scholar
  124. Nilsson GE, Östlund-Nilsson S (2004) Hypoxia in paradise: widespread hypoxia tolerance in coral reef fishes. Proc R Soc Lond B Biol Sci 271:S30–S33Google Scholar
  125. Nilsson GE, Östlund-Nilsson S (2008) Does size matter for hypoxia tolerance in fish? Biol Rev Camb Philos Soc 83:173–189CrossRefPubMedGoogle Scholar
  126. Nilsson GE, Renshaw GM (2004) Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J Exp Biol 207:3131–3139CrossRefPubMedGoogle Scholar
  127. Nilsson GE, Hobbs JP, Munday PL, Östlund-Nilsson S (2004) Coward or braveheart: extreme habitat fidelity through hypoxia tolerance in a coral-dwelling goby. J Exp Biol 207:33–39CrossRefPubMedGoogle Scholar
  128. Nilsson GE, Hobbs JA, Östlund-Nilsson S, Munday PL (2007a) Hypoxia tolerance and air-breathing ability correlate with habitat preference in coral-dwelling fishes. Coral Reefs 26:241–248CrossRefGoogle Scholar
  129. Nilsson GE, Hobbs JPA, Östlund-Nilsson S (2007b) Tribute to PL Lutz: respiratory ecophysiology of coral-reef teleosts. J Exp Biol 210:1673–1686CrossRefPubMedGoogle Scholar
  130. Nilsson GE, Östlund-Nilsson S, Penfold R, Grutter AS (2007c) From record performance to hypoxia tolerance: respiratory transition in damselfish larvae settling on a coral reef. Proc R Soc Lond B Biol Sci 274:79–85CrossRefGoogle Scholar
  131. Nilsson GE, Östlund-Nilsson S, Munday PL (2010) Effects of elevated temperature on coral reef fishes: loss of hypoxia tolerance and inability to acclimate. Comp Biochem Physiol A Comp Physiol 156:389–393CrossRefGoogle Scholar
  132. Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65:559–576Google Scholar
  133. Oliver JK (1984) Intra-colony variation in the growth of Acropora formosa: extension rates and skeletal structure of white (zooxanthellae-free) and brown-tipped branches. Coral Reefs 3:139–147CrossRefGoogle Scholar
  134. Onton K, Page CA, Wilson SK, Neale S, Armstrong S (2011) Distribution and drivers of coral disease at Ningaloo reef, Indian Ocean. Mar Ecol Prog Ser 433:75–84CrossRefGoogle Scholar
  135. Ostlund-Nilsson S, Nilsson GE (2004) Breathing with a mouth full of eggs: respiratory consequences of mouthbrooding in cardinalfish. Proc R Soc Lond B Biol Sci 271:1015–1022CrossRefGoogle Scholar
  136. Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422CrossRefPubMedGoogle Scholar
  137. Pastorok RA, Bilyard GR (1985) Effects of sewage pollution on coral-reef communities. Mar Ecol Prog Ser 21:175–189CrossRefGoogle Scholar
  138. Patterson MR (1992a) A mass transfer explanation of metabolic scaling relations in some aquatic invertebrates and algae. Science 255:1421–1423CrossRefPubMedGoogle Scholar
  139. Patterson MR (1992b) A chemical engineering view of cnidarian symbioses. Am Zool 32:566–582CrossRefGoogle Scholar
  140. Patterson MR, Sebens KP, Olson RR (1991) In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnol Oceanogr 36:936–948CrossRefGoogle Scholar
  141. Pauly D, Cheung WW (2018) Sound physiological knowledge and principles in modeling shrinking of fishes under climate change. Glob Chang Biol 24:e15–e26CrossRefPubMedGoogle Scholar
  142. Pörtner HO (2012) Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar Ecol Prog Ser 470:273–290CrossRefGoogle Scholar
  143. Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619CrossRefGoogle Scholar
  144. Rex A, Montebon F, Yap HT (1995) Metabolic responses of the scleractinian coral Porites cylindrica Dana to water motion. I. Oxygen flux studies. J Exp Mar Bio Ecol 186:33–52CrossRefGoogle Scholar
  145. Rinkevich B, Loya Y (1984) Does light enhance calcification in hermatypic corals? Mar Biol 80:1–6CrossRefGoogle Scholar
  146. Roberty S, Bailleul B, Berne N, Franck F, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204:81–91CrossRefPubMedGoogle Scholar
  147. Roffman B (1968) Patterns of oxygen exchange in some Pacific corals. Comp Biochem Physiol 27:405–418CrossRefGoogle Scholar
  148. Routley MH, Nilsson GE, Renshaw GM (2002) Exposure to hypoxia primes the respiratory and metabolic responses of the epaulette shark to progressive hypoxia. Comp Biochem Physiol A Comp Physiol 131:313–321CrossRefGoogle Scholar
  149. Rutherford LD Jr, Thuesen EV (2005) Metabolic performance and survival of medusae in estuarine hypoxia. Mar Ecol Prog Ser 294:189–200CrossRefGoogle Scholar
  150. Sassaman C, Mangum CP (1972) Adaptations to environmental oxygen levels in infaunal and epifaunal sea anemones. Biol Bull 143:657–678CrossRefPubMedGoogle Scholar
  151. Sassaman C, Mangum CP (1973) Relationship between aerobic and anaerobic metabolism in estuarine anemones. Comp Biochem Physiol A Comp Physiol 44:1313–1319CrossRefGoogle Scholar
  152. Sassaman C, Mangum CP (1974) Gas exchange in a cerianthid. J Exp Zool 188:297–306CrossRefPubMedGoogle Scholar
  153. Sato Y, Civiello M, Bell SC, Willis BL, Bourne DG (2016) Integrated approach to understanding the onset and pathogenesis of black band disease in corals. Environ Microbiol 18:752–765CrossRefPubMedGoogle Scholar
  154. Shashar N, Cohen Y, Loya Y (1993) Extreme diel fluctuations of oxygen in diffusive boundary layers surrounding stony corals. Biol Bull 185:455–461CrossRefPubMedGoogle Scholar
  155. Shashar N, Kinane S, Jokiel PL, Patterson MR (1996) Hydromechanical boundary layers over a coral reef. J Exp Mar Bio Ecol 199:17–28CrossRefGoogle Scholar
  156. Shick JM (1990) Diffusion limitation and hyperoxic enhancement of oxygen consumption in zooxanthellate sea anemones, zoanthids, and corals. Biol Bull 179:148–158CrossRefPubMedGoogle Scholar
  157. Shumway SE (1978) Activity and respiration in the anemone, Metridium senile (L.) exposed to salinity fluctuations. J Exp Mar Bio Ecol 33:85–92CrossRefGoogle Scholar
  158. Simpson CJ, Cary JL, Masini RJ (1993) Destruction of corals and other reef animals by coral spawn slicks on Ningaloo Reef, Western Australia. Coral Reefs 12:185–191CrossRefGoogle Scholar
  159. Smith GB (1975) The 1971 red tide and its impact on certain reef communities in the mid-eastern Gulf of Mexico. Environ Lett 9:141–152CrossRefPubMedGoogle Scholar
  160. Smith SV, Kimmerer WJ, Laws EA, Brock RE, Walsh TW (1981) Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutritional perturbation. Pac Sci 35:279–395Google Scholar
  161. Smith JE, Runcie JW, Smith CM (2005) Characterization of a large-scale ephemeral bloom of the green alga Cladophora sericea on the coral reefs of West Maui, Hawai’i. Mar Ecol Prog Ser 302:77–91CrossRefGoogle Scholar
  162. Smith JE, Shaw M, Edwards RA, Obura D, Pantos O, Sala E, Sandin SA, Smriga S, Hatay M, Rohwer FL (2006) Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol Lett 9:835–845CrossRefPubMedGoogle Scholar
  163. Sørensen C, Munday PL, Nilsson GE (2014) Aerobic vs. anaerobic scope: sibling species of fish indicate that temperature dependence of hypoxia tolerance can predict future survival. Glob Chang Biol 20:724–729CrossRefPubMedGoogle Scholar
  164. Szczebak JT, Henry RP, Al-Horani FA, Chadwick NE (2013) Anemonefish oxygenate their anemone hosts at night. J Exp Biol 216:970–976CrossRefPubMedGoogle Scholar
  165. Tamai K (1993) Tolerance of Theora fragilis (Bivalvia: Semelidae) to low concentrations of dissolved oxygen. Nippon Suisan Gakkaishi 59:615–620 [In Japanese] CrossRefGoogle Scholar
  166. Thacker RW, Paul VJ (2001) Are benthic cyanobacteria indicators of nutrient enrichment? Relationships between cyanobacterial abundance and environmental factors on the reef flats of Guam. Bull Mar Sci 69:497–508Google Scholar
  167. Tytler EM, Davies PS (1984) Photosynthetic production and respiratory energy expenditure in the anemone Anemonia sulcata (Pennant). J Exp Mar Bio Ecol 81:73–86CrossRefGoogle Scholar
  168. Ulstrup KE, Hill R, Ralph PJ (2005) Photosynthetic impact of hypoxia on in hospite zooxanthellae in the scleractinian coral Pocillopora damicornis. Mar Ecol Prog Ser 286:125–132CrossRefGoogle Scholar
  169. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Proc Natl Acad Sci U S A 105:15452–15457CrossRefPubMedPubMedCentralGoogle Scholar
  170. Vaquer-Sunyer R, Duarte CM (2011) Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob Chang Biol 17:1788–1797CrossRefGoogle Scholar
  171. Villanueva RD, Yap HT, Montaño MNE (2005) Survivorship of coral juveniles in a fish farm environment. Mar Pollut Bull 51:580–589CrossRefPubMedGoogle Scholar
  172. Wabnitz C, Taylor M, Green E, Razak T (2003) From Ocean to Aquarium. UNEP-WCMC, Cambridge, UKGoogle Scholar
  173. Wangpraseurt D, Weber M, Røy H, Polerecky L, de Beer D, Nugues MM (2012) In situ oxygen dynamics in coral–algal interactions. PloS One 7:e31192CrossRefPubMedPubMedCentralGoogle Scholar
  174. Weber M, de Beer D, Lott C, Polerecky L, Kohls K, Abed RM, Ferdelman TG, Fabricius KE (2012) Mechanisms of damage to corals exposed to sedimentation. Proc Natl Acad Sci U S A 109:E1558–E1567CrossRefPubMedPubMedCentralGoogle Scholar
  175. Weiss RF (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res 17:721–735Google Scholar
  176. Whitney SM, Shaw DC, Yellowlees D (1995) Evidence that some dinoflagellates contain a ribulose-1, 5-bisphosphate carboxylase/oxygenase related to that of the α-proteobacteria. Proc R Soc Lond B Biol Sci 259:271–275CrossRefGoogle Scholar
  177. Wijgerde T, Jurriaans S, Hoofd M, Verreth JA, Osinga R (2012) Oxygen and heterotrophy affect calcification of the scleractinian coral Galaxea fascicularis. PLoS One 7:e52702CrossRefPubMedPubMedCentralGoogle Scholar
  178. Wijgerde T, Silva CI, Scherders V, van Bleijswijk J, Osinga R (2014) Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen. Biol Open 3:489–493CrossRefPubMedPubMedCentralGoogle Scholar
  179. Wild C, Niggl W, Naumann MS, Haas AF (2010) Organic matter release by Red Sea coral reef organisms—potential effects on microbial activity and in situ O2 availability. Mar Ecol Prog Ser 411:61–71CrossRefGoogle Scholar
  180. Yonge SCM, Nicholls AG, Yonge MJ (1932) The relationship between respiration in corals and the production of oxygen by their zooxanthellae. Scientific Reports, Great Barrier Reef Expedition 1928–29(1):213–251Google Scholar
  181. Zhu B, Wang G, Huang B, Tseng CK (2004) Effects of temperature, hypoxia, ammonia and nitrate on the bleaching among three coral species. Chin Sci Bull 49:1923–1928CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Smithsonian Tropical Research InstituteBalboa, AnconRepublic of Panama
  2. 2.Center for Population BiologyUniversity of California, DavisDavisUSA
  3. 3.Department of Environmental Engineering Sciences, Engineering School of Sustainable Infrastructure and EnvironmentUniversity of FloridaGainesvilleUSA

Personalised recommendations