Coral Reefs

, Volume 37, Issue 3, pp 779–789 | Cite as

Evidence of photoacclimatization at mesophotic depths in the coral-Symbiodinium symbiosis at Flower Garden Banks National Marine Sanctuary and McGrail Bank

  • Jennifer M. PolinskiEmail author
  • Joshua D. Voss


Similar to shallower conspecifics, mesophotic scleractinian corals found at ~ 30–150 m depths maintain important symbioses with photosynthetic microalgae in the genus Symbiodinium. Despite the importance of coral-algal symbioses in corals’ ability to thrive in multiple dynamic environments and potential role in connectivity, few studies have focused on mesophotic Symbiodinium assemblages. This study examines these assemblages in Montastraea cavernosa found at shallow (20–25 m) and mesophotic (45–50 m) depths at Flower Garden Banks National Marine Sanctuary and McGrail Bank, in the northwest Gulf of Mexico. Mesophotic corals contained significantly more Symbiodinium cells, more chlorophyll a per Symbiodinium cell, and more chlorophyll a and c2 per unit area coral tissue than shallow corals. However, both mesophotic and shallow M. cavernosa contained similar chlorophyll c2 per Symbiodinium cell. Next-generation sequencing of the internal transcribed spacer region (ITS2) of the ribosomal DNA indicated similar Symbiodinium assemblage diversity at all banks and between depths. All assemblages were dominated by sequences most closely related to S. goreaui, type C1, with three additional low-abundance sequences, identified as 2 C types and 1 A type, also consistently observed among colonies. Both the dominant C1 sequence and the background sequences persisted over two sampling years. These results suggest that algal symbiont assemblages will not limit connectivity potential in M. cavernosa in the northwest Gulf of Mexico. Furthermore, we hypothesize that increased Symbiodinium abundance may represent an effective light-harvesting strategy on light-limited mesophotic coral reefs.


Mesophotic Zooxanthellae Symbiodinium Gulf of Mexico Symbiosis Acclimatization 



We are grateful to staff of the Flower Garden Banks National Marine Sanctuary, the crew of the R/V Manta, the University of North Carolina at Wilmington Undersea Vehicle Program, and the divers for their assistance with sample collection. All samples were collected under permit number FGBNMS-2014-014-A1. We also thank the Genomic Sequencing and Analysis Facility at the University of Texas at Austin and the Scripps Research Institutes in Jupiter, Florida, and La Jolla, California, for sequencing services. We appreciate contributions by M Studivan on analysis of temperature data. This study was funded by the NOAA Office of Ocean Exploration and Research under awards NA09OAR4320073 and NA14OAR4320260 to the Cooperative Institute for Ocean Exploration, Research and Technology (CIOERT) at Florida Atlantic University’s Harbor Branch Oceanographic Institute. Additional funding was provided by a donation from the Danbury Fund to Harbor Branch Oceanographic Institute and by a Florida Atlantic University Graduate Research and Inquiry Program grant. This is Harbor Branch Oceanographic Institute contribution number 2150.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.


  1. Alamaru A, Loya Y, Brokovich E, Yam R, Shemesh A (2009) Carbon and nitrogen utilization in two species of Red Sea corals along a depth gradient: Insights from stable isotope analysis of total organic material and lipids. Geochim Cosmochim Acta 73:5333–5342CrossRefGoogle Scholar
  2. Arif C, Daniels C, Bayer T, Banguera-Hinestroza E, Barbrook A, Howe CJ, LaJeunesse TC, Voolstra CR (2014) Assessing Symbiodinium diversity in scleractinian corals via next-generation sequencing-based genotyping of the ITS2 rDNA region. Mol Ecol 23:4418–4433CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ccology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  4. Blyth-Skyrme VJ, Rooney JJ, Parrish FA, Boland RC (2013) Mesophotic coral ecosystems: Potential candidates as Essential Fish Habitat and Habitat Areas of Particular Concern. Pacific Islands Fish. Sci. Cent. Natl. Mar. Fish. Sci. Cent. Admin. Rep. H-13-02Google Scholar
  5. Bongaerts P, Frade PR, Hay KB, Englebert N, Latijnhouwers RW, Bak RPM, Vermeij MJA, Hoegh-Guldberg O (2015a) Deep down on a Caribbean reef: lower mesophotic depths harbor a specialized coral-emdosymbiont community. Sci Rep 5:7652CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bongaerts P, Carmichael M, Hay KB, Tonk L, Frade PR, Hoegh-guldberg O (2015b) Prevalent endosymbiont zonation shapes the depth distributions of scleractinian coral species. R Soc open Sci 2:140297CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bongaerts P, Ridgway T, Sampayo EM, Hoegh-Guldberg O (2010) Assessing the “deep reef refugia” hypothesis: focus on Caribbean reefs. Coral Reefs 29:309–327CrossRefGoogle Scholar
  8. Box GEP, Cox DR (1964) An analysis of transformations. J R Stat Soc Ser B (Methodological 211–252)Google Scholar
  9. Chan YL, Pochon X, Fisher MA, Wagner D, Concepcion GT, Kahng SE, Toonen RJ, Gates RD (2009) Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67–100 m depths) coral Leptoseris. BMC Ecol 9:21CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chauka LJ, Mbije NE, Kangwe SJ (2015) Seasonal fluctuations in photochemical efficiency of Symbiodinium harbored by three reef-building corals that differ in bleaching susceptibility. WIO J Mar Sci 14:1–9Google Scholar
  11. Cook CB, D’Elia CF, Muller-Parker G (1988) Host feeding and nutrient sufficiency for zooxanthellae in the sea anemone Aiptasia pallida. Mar Biol 98:253–262CrossRefGoogle Scholar
  12. Cooper TF, Ulstrup KE, Dandan SS, Heyward AJ, Kühl M, Muirhead A, O’Leary RA, Ziersen BEF, van Oppen MJH (2011) Niche specialization of reef-building corals in the mesophotic zone: metabolic trade-offs between divergent Symbiodinium types. Proc R Soc Lond B 278:1840–1850CrossRefGoogle Scholar
  13. Correa AMS, Baker AC (2009) Understanding diversity in coral-algal symbiosis: a cluster-based approach to interpreting fine-scale genetic variation in the genus Symbiodinium. Coral Reefs 28:81–93CrossRefGoogle Scholar
  14. Correa AMS, Brandt ME, Smith TB, Thornhill DJ, Baker AC (2009) Symbiodinium associations with diseased and healthy scleractinian corals. Coral Reefs 28:437–448CrossRefGoogle Scholar
  15. Cunning R, Baker AC (2014) Not just who, but how many: the importance of partner abundance in reef coral symbioses. Front Microbiol 5:1–10CrossRefGoogle Scholar
  16. Cunning R, Vaughan N, Gillette P, Capo TR, Maté JL, Backer AC (2015) Dynamic regulation of partner abundance mediates response of reef coral symbioses to environmental chance. Ecology 96(5):1411–1420CrossRefPubMedGoogle Scholar
  17. Dubinsky Z, Stambler N, Ben-Zion M, Mccloskey L, Muscatine L, Falkowski PG (1990) The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc R Soc Lond B, Biol Sci 239:231–246CrossRefGoogle Scholar
  18. Dustan P (1979) Distribution of zooxanthellae and photosynthetic chloroplast pigments of the reef-building coral Montastrea annularis (Ellis and Solander) in relation to depth on a West Indian coral reef. Bull Mar Sci 29:79–95Google Scholar
  19. Fagoone I, Wilson HB, Hassell MP, Turner JR (1999) The dynamics of zooxanthellae populations: A long-term study in the field. Science 283:843–845CrossRefGoogle Scholar
  20. Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174CrossRefGoogle Scholar
  21. Fay SA, Weber MX, Lipps JH (2009) The distribution of Symbiodinium diversity within individual host foraminifera. Coral Reefs 28:717–726CrossRefGoogle Scholar
  22. Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240CrossRefGoogle Scholar
  23. Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microb Ecol 60:250–263CrossRefPubMedGoogle Scholar
  24. Fitt WK, McFarland FK, Warner ME, Chilcoat GC (2000) Seasonal patterns of tissue biomass and densities of symbiotic dinoflagellates in reef coarls and relations to coral bleaching. Limnol Oceanogr 45(3):677–685CrossRefGoogle Scholar
  25. Frade PR, De Jongh F, Vermeulen F, van Bleijswijk J, Bak RPM (2008) Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703CrossRefPubMedGoogle Scholar
  26. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: Accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152CrossRefPubMedPubMedCentralGoogle Scholar
  27. Glynn PW (1996) Coral reef bleaching: facts, hypotheses and implications. Glob Chang Biol 2:495–509CrossRefGoogle Scholar
  28. Granados-Cifuentes C, Rodriguez-Lanetty M (2011) The use of high-resolution melting analysis for genotyping Symbiodinium strains: a sensitive and fast approach. Mol Ecol Resour 11:394–399CrossRefPubMedGoogle Scholar
  29. Green EA, Davies SW, Matz MV, Medina M (2014) Quantifying cryptic Symbiodinium diversity within Orbicella faveolata and Orbicella franksi at the Flower Garden Banks, Gulf of Mexico. PeerJ 2:e386CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Theme section on “Mesophotic Coral Ecosystems: Characterization, Ecology, and Management”. Coral Reefs 29:247–251CrossRefGoogle Scholar
  31. Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev 84:1–17CrossRefPubMedGoogle Scholar
  32. Hume BCC, D’Angelo C, Cunnington A, Smith EG, Wiedenmann J (2014) The corallivorous flatworm Amakusaplana acroporae: an invasive species threat to coral reefs? Coral Reefs 33:267–272CrossRefGoogle Scholar
  33. Jamieson GS, Pellegrin N, Jesson S (2007) Taxonomy and zoogeography of cold-water corals in coastal British Columbia. Conserv Adapt Manag Seamount Deep Coral Ecosyst 215–229Google Scholar
  34. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, ca and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194CrossRefGoogle Scholar
  35. Jones RJ (1997) Zooxanthellae loss as a bioassay for assessing stress in corals. Mar Ecol Prog Ser 149:163–171CrossRefGoogle Scholar
  36. Kahng SE, Garcia-Sais JR, Spalding HL, Brokovich E, Wagner D, Weil E, Hinderstein L, Toonen RJ (2010) Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29:255–275CrossRefGoogle Scholar
  37. Kahng SE, Hochberg EJ, Apprill A, Wagner D, Luck DG, Perez D, Bidigare RR (2012) Efficient light harvesting in deep-water zooxanthellate corals. Mar Ecol Prog Ser 455:65–77CrossRefGoogle Scholar
  38. Kaiser P, Schlichter D, Fricke HW (1993) Influence of light on algal symbionts of the deep water coral Leptoseris fragilis. Mar Biodivers 117:45–52Google Scholar
  39. Klepac CN, Beal J, Kenkel CD, Sproles A, Polinski JM, Williams MA, Matz MV, Voss JD (2015) Seasonal stability of coral-Symbiodinium associations in the subtropical coral habitat of St. Lucie Reef, Florida. Mar Ecol Prog Ser 532:137–151CrossRefGoogle Scholar
  40. Kohler KE, Gill SM (2006) Coral Point Count with Excel extensions (CPCe): A Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269CrossRefGoogle Scholar
  41. Ladriére O, Penin L, van Lierde E, Vidal-Dupiol J, Kayal M, Roberty S, Poulicek M, Adjeroud M (2014) Natural spatial variability of algal endosymbiont density in the coral Acropora globiceps: a small-scale approach along environmental gradients around Moorea (French Polynesia). J Mar Biol Assoc UK 94(1):65–74CrossRefGoogle Scholar
  42. Lajeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  43. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: In search of a “species” level marker. J Phycol 37:866–880CrossRefGoogle Scholar
  44. LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581CrossRefPubMedGoogle Scholar
  45. LaJeunesse TC, Lee SY, Gil-Agudelo DL, Knowlton N, Jeong HJ (2015) Symbiodinium necroappetens sp. nov. (Dinophyceae): an opportunist “zooxanthella” found in bleached and diseased tissues of Caribbean reef corals. Eur J Phycol 50:223–238CrossRefGoogle Scholar
  46. Lajeunesse TC, Parkinson JE, Reimer JD (2012) A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol 48:1380–1391CrossRefPubMedGoogle Scholar
  47. LaJeunesse TC, Thornhill DJ (2011) Improved resolution of reef-coral endosymbiont (Symbiodinium) species diversity, ecology, and evolution through psbA non-coding region genotyping. PLoS One 6(12):e29013CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lesser M, Falcón L, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O, Iglesias-Prieto R (2007) Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser 346:143–152CrossRefGoogle Scholar
  49. Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Bio Ecol 375:1–8CrossRefGoogle Scholar
  50. Lesser MP, Slattery M, Stat M, Ojimi M, Gates RD, Grottoli A (2010) Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology 91:990–1003CrossRefPubMedGoogle Scholar
  51. Li W, Godzik A (2006) Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–1659CrossRefPubMedGoogle Scholar
  52. Lindfield SJ, Harvey ES, Halford AR, McIlwain JL (2016) Mesophotic depths as refuge areas for fishery-targeted species on coral reefs. Coral Reefs 35:125–137CrossRefGoogle Scholar
  53. Loh WKW, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107CrossRefGoogle Scholar
  54. Loya Y, Eyal G, Treibitz T, Lesser MP, Appeldoorn R (2016) Theme section on mesophotic coral ecosystems: Advances in knowledge and future perspectives. Coral Reefs 35:1–9CrossRefGoogle Scholar
  55. Marcelino LA, Westneat MW, Stoyneva V, Henss J, Rogers JD, Radosevich A, Turzhitsky V, Siple M, Fang A, Swain TD, Fung J, Backman V (2013) Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching. PLoS One 8(4):e61492CrossRefPubMedPubMedCentralGoogle Scholar
  56. Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328CrossRefGoogle Scholar
  57. Mass T, Kline DI, Roopin M, Veal CJ, Cohen S, Iluz D, Levy O (2010) The spectral quality of light is a key driver of photosynthesis and photoadaptation in Stylophora pistillata colonies from different depths in the Red Sea. J Exp Biol 213:4084–4091CrossRefPubMedGoogle Scholar
  58. Mieog JC, Van Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: Implications for symbiont shuffling. Coral Reefs 26:449–457CrossRefGoogle Scholar
  59. Nir O, Gruber DF, Einbinder S, Kark S, Tchernov D (2011) Changes in scleractinian coral Seriatopora hystrix morphology and its endocellular Symbiodinium characteristics along a bathymetric gradient from shallow to mesophotic reef. Coral Reefs 30:1089–1100CrossRefGoogle Scholar
  60. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) vegan: Community Ecology PackageGoogle Scholar
  61. Paradis E (2010) Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420CrossRefPubMedGoogle Scholar
  62. Parkinson JE, Coffroth MA, LaJeunesse TC (2015) New species of Clade B Symbiodinium (Dinophyceae) from the greater Caribbean belong to different functional guilds: s. aenigmaticum sp. nov., S. antillogorgium sp. nov., S. endomadracis sp. nov., and S. pseudominutum sp. J Phycol 51:850–858CrossRefPubMedGoogle Scholar
  63. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497CrossRefPubMedGoogle Scholar
  64. Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in sortif foraminiferans. Marine Biology 139:1069–1078CrossRefGoogle Scholar
  65. Pochon X, Putnam HM, Burki F, Gates RD (2012) Identifying and characterizing alternative molecular markers for the symbiotic and free-living dinoflagellate genus Symbiodinium. PLoS One 7:e29816CrossRefPubMedPubMedCentralGoogle Scholar
  66. Pyle RL (2000) Assessing undiscovered fish biodiversity on deep coral reefs using advanced self-contained diving technology. Mar Technol Soc J 34:82–91CrossRefGoogle Scholar
  67. Quigley KM, Davies SW, Kenkel CD, Willis BL, Matz MV, Bay LK (2014) Deep-sequencing method for quantifying background abundances of Symbiodinium types: exploring the rare Symbiodinium biosphere in reef-building corals. PLoS One 9:e94297CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rezak B, Bright TJ, McGrail DW (1985) Reefs and banks of the Northwest Gulf of Mexico: their geological, biological, and physical dynamics. Wily, New YorkGoogle Scholar
  69. Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733CrossRefPubMedGoogle Scholar
  70. Sampayo E, Dove S, LaJeunesse TC (2009) Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus Symbiodinium. Mol Ecol 18:500–519CrossRefPubMedGoogle Scholar
  71. Santos SR, Shearer TL, Hannes TL, Coffroth MA (2004) Fine scale diversity and specificity in the most prevalent lineage of symbiotic dinoflagellates (Symbiodinium, Dinophyceae) of the Caribbean. Mol Ecol 13:459–469CrossRefPubMedGoogle Scholar
  72. Saunder BK, Muller-Parker G (1997) The effects of temperature and light on two algal populations in the temperate sea anemone Anthopleura elegantissima (Brandt, 1835). J Exp Mar Bio Ecol 211:213–224CrossRefGoogle Scholar
  73. Savage AM, Goodson MS, Visram S, Trapido-Rosenthal HG, Wiedenmann J, Douglas AE (2002) Molecular diversity of symbiotic algae at the latitudinal margins of their distribution: dinoflagellates of the genus Symbiodinium in corals and sea anemones. Mar Ecol Prog Ser 244:17–26CrossRefGoogle Scholar
  74. Scheufen T, Iglesias-Prieto R, Susana Enríquez (2017) Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front Mar Sci 4:309CrossRefGoogle Scholar
  75. Serrano X, Baums IB, O’Reilly K, Smith TB, Jones RJ, Shearer TL, Nunes FLD, Baker AC (2014) Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths. Mol Ecol 23:4226–4240CrossRefPubMedGoogle Scholar
  76. Silverstein RN, Correa AMS, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc Biol Sci 279:2609–2618CrossRefPubMedPubMedCentralGoogle Scholar
  77. Smith EG, D’Angelo C, Sharon Y, Tchernov D, Wiedenmann J (2017) Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc R Soc Lond B 284:20170320CrossRefGoogle Scholar
  78. Stat M, Pochon X, Cowie ROM, Gates RD (2009) Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar Ecol Prog Ser 386:83–96CrossRefGoogle Scholar
  79. Stat M, Bird CE, Pochon X, Chasqui L, Chauka LJ, Concepcion GT, Logan D, Takabayashi M, Toonen RJ, Gates RD (2011) Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. PLoS One 6:e15854CrossRefPubMedPubMedCentralGoogle Scholar
  80. Stat M, Gates RD (2011) Clade D Symbiodinium in scleractinian corals: a “nugget” of hope, a selfish opportunist, an ominous sign, or all of the above? J Mar Biol 2011:1–9CrossRefGoogle Scholar
  81. Thornhill DJ, LaJeunesse TC, Santos SR (2007) Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifcats confound biodiversity estimates. Mol Ecol 16:5326–5340CrossRefPubMedGoogle Scholar
  82. Thornhill DJ, Rotjan RD, Todd BD, Chilcoat GC, Iglesias-Prieto R, Kemp DW, LaJeunesse TC, McCabe Reynolds J, Schmidt GW, Shannon T, Warner ME, Fitt WK (2011) A connection between colony biomass and death in Caribbean reef-building corals. PLoS ONE 6(12):e29535CrossRefPubMedPubMedCentralGoogle Scholar
  83. Thornhill DJ, Lewis AM, Wham DC, LaJeunesse TC (2013) Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution 68:352–367CrossRefPubMedGoogle Scholar
  84. Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low light and extremely low light. J Exp Mar Biol Ecol 263:211–225CrossRefGoogle Scholar
  85. Tonk L, Bongaerts P, Sampayo EM, Hoegh-Guldberg O (2013) SymbioGBR: a web-based database of Symbiodinium associated with cnidarian hosts on the Great Barrier Reef. BMC Ecol 13:7CrossRefPubMedPubMedCentralGoogle Scholar
  86. Ziegler M, Roder C, Büchel C, Voolstra C (2015a) Niche acclimatization in Red Sea corals is dependent on flexibility of host-symbiont association. Mar Ecol Prog Ser 533:149–161CrossRefGoogle Scholar
  87. Ziegler M, Roder CM, Buchel C, Voolstra CR (2015b) Mesophotic coral depth acclimatization is a function of host-specific symbiont physiology. Front Mar Sci 2:1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Harbor Branch Oceanographic InstituteFlorida Atlantic UniversityFort PierceUSA
  2. 2.Gloucester Marine Genomics InstituteGloucesterUSA

Personalised recommendations