Advertisement

Coral Reefs

, Volume 37, Issue 3, pp 737–750 | Cite as

Comparing patterns of taxonomic, functional and phylogenetic diversity in reef coral communities

  • Joy S. Y. Wong
  • Y. K. Samuel Chan
  • C. S. Lionel Ng
  • Karenne P. P. Tun
  • Emily S. Darling
  • Danwei Huang
Report

Abstract

Biodiversity defines the variety of living organisms on this planet and is often quantified by the total number of species. However, species richness is insufficient in accounting for the differences in evolutionary history and the functions species contribute to the ecosystem. To address this shortcoming, phylogenetic diversity and functional diversity are increasingly being quantified and studied to inform ecological theory and conservation prioritisation. For scleractinian reef corals, congruence, mismatch and complementarity among different biodiversity components remain unknown, but recently available trait and phylogenetic data provide a robust test of these relationships. Here, we examine the taxonomic, functional and phylogenetic diversity of corals across a gradient of diversity in Singapore. Relationships among the biodiversity components at 25 reef sites are compared to identify patterns of mismatch or congruence for testing the precision of using one as a proxy for another. Furthermore, we examine community assembly of corals using null models derived from randomised community data. Our results show that correlations among biodiversity components are generally positive but weak, with species-dependent (non-abundance-weighted) metrics more strongly correlated with one another than species-independent (abundance-weighted) measures. No single biodiversity component could predict another precisely to be used as a reliable proxy for coral communities. Therefore, if trait diversity and evolutionary history were to be set as conservation targets, it is essential to maximise functional diversity and phylogenetic diversity explicitly when identifying areas or assemblages for management. Null models reveal the presence of more-than-expected similarities in trait combinations and evolutionary relationships among species in most reef communities. These findings suggest that environmental filtering under high levels of coastal development and sedimentation may be associated with coral community composition on Singapore’s reefs. Our approach provides new insights into the relationships between different components of coral diversity and has important applications for marine conservation planning.

Keywords

Biodiversity Community assembly Functional traits Phylogeny Scleractinia Species richness 

Notes

Acknowledgements

We thank members of the Reef Ecology Laboratory, National University of Singapore, for assistance with the field surveys, as well as two anonymous reviewers for constructive comments that helped improve the manuscript. We are also grateful for the support provided by the National Research Foundation, Prime Minister’s Office, Singapore, under its Marine Science R&D Programme (MSRDP-P03), and a Ministry of Education AcRF Tier 1 Start-up Grant (R-154-000-671-133).

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

338_2018_1698_MOESM1_ESM.pdf (549 kb)
Supplementary material 1 (PDF 550 kb)

References

  1. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Bioph Intern 11:36–42Google Scholar
  2. Arponen A (2012) Prioritizing species for conservation planning. Biodivers Conserv 21:875–893CrossRefGoogle Scholar
  3. Asner GP, Brodrick PG, Philipson C, Vaughn NR, Martin RE, Knapp DE, Heckler J, Evans LJ, Jucker T, Goossens B, Stark DJ, Reynolds G, Ong R, Renneboog N, Kugan F, Coomes DA (2018) Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo. Biol Conserv 217:289–310CrossRefGoogle Scholar
  4. Baird AH, Hoogenboom MO, Huang D (2017) Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia, Merulinidae). ZooKeys 662:49–66CrossRefGoogle Scholar
  5. Bernhardt-Römermann M, Römermann C, Nuske R, Parth A, Klotz S, Schmidt W, Stadler J (2008) On the identification of the most suitable traits for plant functional trait analyses. Oikos 117:1533–1541CrossRefGoogle Scholar
  6. Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540CrossRefGoogle Scholar
  7. Briggs JC (1999) Coincident biogeographic patterns: Indo-West Pacific Ocean. Evolution 53:326–335PubMedCrossRefGoogle Scholar
  8. Budd AF, Romano SL, Smith ND, Barbeitos MS (2010) Rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integr Comp Biol 50:411–427PubMedCrossRefGoogle Scholar
  9. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087CrossRefGoogle Scholar
  10. Cadotte MW, Cavender-Bares J, Tilman D, Oakley TH (2009) Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS ONE 4:e5695PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cavender-Bares J, Kozak KH, Fine PV, Kembel SW (2009) The merging of community ecology and phylogenetic biology. Ecol Lett 12:693–715PubMedCrossRefGoogle Scholar
  12. Cernansky R (2017) Biodiversity moves beyond counting species. Nature 546:22–24PubMedCrossRefGoogle Scholar
  13. Cesar H, Burke L, Pet-Soede L (2003) The economics of worldwide coral reef degradationGoogle Scholar
  14. Chou LM (2006) Marine habitats in one of the world’s busiest harbours. In: Wolanski E (ed) The environment in Asia Pacific harbours. Springer, Dordrecht, pp 377–391CrossRefGoogle Scholar
  15. Chou LM, Toh KB, Tay YC, Hui VX (2012) Coral reefs in Singapore: past, present and future. Proceedings of the Asian Conference on Sustainability, Energy & the Environment 2012. International Academic Forum, Nagoya, pp 431-436Google Scholar
  16. Clark CM, Flynn DF, Butterfield BJ, Reich PB (2012) Testing the link between functional diversity and ecosystem functioning in a Minnesota grassland experiment. PLoS ONE 7:e52821PubMedPubMedCentralCrossRefGoogle Scholar
  17. D’agata S, Mouillot D, Kulbicki M, Andréfouët S, Bellwood DR, Cinner JE, Cowman PF, Kronen M, Pinca S, Vigliola L (2014) Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr Biol 24:555–560PubMedCrossRefGoogle Scholar
  18. Dalerum F, Cameron EZ, Kunkel K, Somers MJ (2012) Interactive effects of species richness and species traits on functional diversity and redundancy. Theor Ecol 5:129–139CrossRefGoogle Scholar
  19. Darling ES, Alvarez-Filip L, Oliver TA, McClanahan TR, Côté IM (2012) Evaluating life-history strategies of reef corals from species traits. Ecol Lett 15:1378–1386PubMedCrossRefGoogle Scholar
  20. Darling ES, McClanahan TR, Coté IM (2013) Life histories predict coral community disassembly under multiple stressors. Glob Change Biol 19:1930–1940CrossRefGoogle Scholar
  21. Darling ES, Graham NAJ, Januchowski-Hartley FA, Nash KL, Pratchett MS, Wilson SK (2017) Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36:561–575CrossRefGoogle Scholar
  22. Denis V, Ribas-Deulofeu L, Sturaro N, Kuo CY, Chen CA (2017) A functional approach to the structural complexity of coral assemblages based on colony morphological features. Sci Rep 7:9849PubMedPubMedCentralCrossRefGoogle Scholar
  23. Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N (2010) Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: the need for integrative conservation strategies in a changing world. Ecol Lett 13:1030–1104PubMedGoogle Scholar
  24. Díaz S, Cabido M (2001) Vive la difference: plant functional diversity matters to ecosystem processes. Trends Ecol Evol 16:646–655CrossRefGoogle Scholar
  25. Díaz S, Lavorel S, de Bello F, Quétier F, Grigulis K, Robson TM (2007) Incorporating plant functional diversity effects in ecosystem service assessments. Proc Natl Acad Sci U S A 104:20684–20689PubMedPubMedCentralCrossRefGoogle Scholar
  26. Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, Jordano P, Pearse WD (2013) Functional traits, the phylogeny of function, and ecosystem service vulnerability. Environ Conserv 3:2958–2975Google Scholar
  27. Dikou A, van Woesik R (2006) Survival under chronic stress from sediment load: Spatial patterns of hard coral communities in the southern islands of Singapore. Mar Pollut Bull 52:7–21PubMedCrossRefGoogle Scholar
  28. Dudley N, Boucher JL, Cuttelod A, Brooks TM, Langhammer PF (2014) Applications of Key Biodiversity Areas: end-user consultations. IUCN, Cambridge and GlandGoogle Scholar
  29. English S, Wilkinson C, Baker V (1994) Line intercept transect. In: English S, Wilkinson C, Baker V (eds) Survey manual for tropical marine resources. Australian Institute of Marine Science, Townsville, pp 34–51Google Scholar
  30. Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10CrossRefGoogle Scholar
  31. Faith DP (2015) Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos Trans R Soc Lond B Biol Sci 370:20140011PubMedPubMedCentralCrossRefGoogle Scholar
  32. Faith DP, Magallón S, Hendry AP, Conti E, Yahara T, Donoghue MJ (2010) Ecosystem services: an evolutionary perspective on the links between biodiversity and human well-being. Curr Opin Environ Sustain 2:66–74CrossRefGoogle Scholar
  33. Flynn DFB, Mirotchnick N, Jain M, Palmer MI, Naeem S (2011) Functional and phylogenetic diversity as predictors of biodiversity–ecosystem-function relationships. Ecology 92:1573–1581PubMedCrossRefGoogle Scholar
  34. Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Procheş Ş, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V (2007) Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757–760PubMedCrossRefGoogle Scholar
  35. Gin KYH, Lin X, Zhang S (2000) Dynamics and size structure of phytoplankton in the coastal waters of Singapore. J Plankton Res 22:1465–1484CrossRefGoogle Scholar
  36. Goh NKC, Chou LM (1992) A comparison of benthic life-form characteristics of a reef (Cyrene) nearest to and a reef (Raffles Lighthouse) furthest from mainland Singapore. In: Chou LM, Wilkinson CR (eds) Third ASEAN Science and Technology Week Conference Proceedings, vol 6. Marine Science: Living Coastal Resources, 21-23 September 1992, Singapore. National University of Singapore and National Science and Technology Board, Singapore, pp 55–62Google Scholar
  37. Goh NKC, Chua CYY, Chou LM (1994) Depth-related morphology of scleractinian corals on Singapore reefs. In: Sudara S, Wilkinson CR, Chou LM (eds) Third ASEAN-Australia Symposium on Living Coastal Resources, pp 61-67Google Scholar
  38. Google Earth (2013) V 7.3.0.3832. Tanah Merah, Singapore. 1°19′1.54″N, 103°59′16.53″E, Eye alt 16.52 km, 31 December 1993Google Scholar
  39. Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  40. Gotelli NJ, McCabe DJ (2002) Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology 83:2091–2096CrossRefGoogle Scholar
  41. Gower JC, Legendre P (1986) Metric and Euclidean properties of dissimilarity coefficients. J Classif 3:5–48CrossRefGoogle Scholar
  42. Guest J, Tun K, Low J, Vergés A, Marzinelli E, Campbell A, Bauman AG, Feary DA, Chou LM, Steinberg P (2016) 27 years of benthic and coral community dynamics on turbid, highly urbanised reefs off Singapore. Sci Rep 6:36260PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hartmann AC, Baird AH, Knowlton N, Huang D (2017) The paradox of environmental symbiont acquisition in obligate mutualisms. Curr Biol 27:3711–3716PubMedCrossRefGoogle Scholar
  44. Hill J, Wilkinson C (2004) Methods for ecological monitoring of coral reefs. Australian Institute of Marine Science, TownsvilleGoogle Scholar
  45. Hilton MJ, Manning SS (2009) Conversion of coastal habitats in Singapore: indications of unsustainable development. Environ Conserv 22:307–322CrossRefGoogle Scholar
  46. Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742PubMedCrossRefGoogle Scholar
  47. Hoeksema BW (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the Coral Triangle. In: Renema W (ed) Biogeography, time, and place: distributions, barriers, and islands. Springer, Dordrecht, pp 117–178CrossRefGoogle Scholar
  48. Huang D (2012) Threatened reef corals of the world. PLoS ONE 7:e34459PubMedPubMedCentralCrossRefGoogle Scholar
  49. Huang D, Roy K (2015) The future of evolutionary diversity in reef corals. Phil Trans R Soc B 370:20140010PubMedCrossRefGoogle Scholar
  50. Huang D, Tun KP, Chou L, Todd PA (2009) An inventory of zooxanthellate scleractinian corals in Singapore, including 33 new records. Raffles Bull Zool 22:69–80Google Scholar
  51. Huang D, Licuanan WY, Baird AH, Fukami H (2011) Cleaning up the “Bigmessidae”: molecular phylogeny of scleractinian corals from Faviidae, Merulinidae. Pectiniidae and Trachyphylliidae. BMC Evol Biol 11:37PubMedCrossRefGoogle Scholar
  52. Huang D, Benzoni F, Arrigoni R, Baird AH, Berumen ML, Bouwmeester J, Chou LM, Fukami H, Licuanan WY, Lovell ER, Meier R, Todd PA, Budd AF (2014a) Towards a phylogenetic classification of reef corals: the Indo-Pacific genera Merulina, Goniastrea and Scapophyllia (Scleractinia, Merulinidae). Zool Scr 43:531–548CrossRefGoogle Scholar
  53. Huang D, Benzoni F, Fukami H, Knowlton N, Smith ND, Budd AF (2014b) Taxonomic classification of the reef coral families Merulinidae, Montastraeidae, and Diploastraeidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 171:277–355CrossRefGoogle Scholar
  54. Huang D, Licuanan WY, Hoeksema BW, Chen CA, Ang PO, Huang H, Lane DJ, Vo ST, Waheed Z, Affendi YA, Yeemin T (2015) Extraordinary diversity of reef corals in the South China Sea. Mar Biodivers 45:157–168CrossRefGoogle Scholar
  55. Huang D, Arrigoni R, Benzoni F, Fukami H, Knowlton N, Smith ND, Stolarski J, Chou LM, Budd AF (2016a) Taxonomic classification of the reef coral family Lobophylliidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 178:436–481CrossRefGoogle Scholar
  56. Huang D, Hoeksema BW, Affendi YA, Ang PO, Chen CA, Huang H, Lane DJW, Licuanan WY, Vibol O, Vo ST, Yeemin T, Chou LM (2016b) Conservation of reef corals in the South China Sea based on species and evolutionary diversity. Biodivers Conserv 25:331–344CrossRefGoogle Scholar
  57. Huang D, Goldberg EE, Chou LM, Roy K (2018) The origin and evolution of coral species richness in a marine biodiversity hotspot. Evolution 72:288–302PubMedCrossRefGoogle Scholar
  58. Kelly S, Grenyer R, Scotland RW (2014) Phylogenetic trees do not reliably predict feature diversity. Divers Distrib 20:600–612CrossRefGoogle Scholar
  59. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464PubMedCrossRefGoogle Scholar
  60. Kitahara MV, Fukami H, Benzoni F, Huang D (2016) The new systematics of Scleractinia: integrating molecular and morphological evidence. In: Goffredo S, Dubinsky Z (eds) The Cnidaria, Past, Present and Future. Springer, Netherlands, pp 41–59CrossRefGoogle Scholar
  61. Laliberté E, Legendre P (2010) A distance-based framework for measuring functional diversity from multiple traits. Ecology 91:299–305PubMedCrossRefGoogle Scholar
  62. Lamb EG, Bayne E, Holloway G, Schieck J, Boutin S, Herbers J, Haughland DL (2009) Indices for monitoring biodiversity change: Are some more effective than others? Ecol Indic 9:432–444CrossRefGoogle Scholar
  63. Lavorel S, Storkey J, Bardgett RD, de Bello F, Berg MP, Le Roux X, Moretti M, Mulder C, Pakeman RJ, Diaz S, Harrington R (2013) A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J Veg Sci 24:942–948CrossRefGoogle Scholar
  64. Lee AC, Tan KS, Sin TM (2009) Intertidal assemblages on coastal defence structures in Singapore I: a faunal study. Raffles Bull Zool S22:237–254Google Scholar
  65. Lefcheck JS, Duffy JE (2015) Multitrophic functional diversity predicts ecosystem functioning in experimental assemblages of estuarine consumers. Ecology 96:2973–2983PubMedCrossRefGoogle Scholar
  66. Low JKY, Chou LM (1994) Sedimentation rates in Singapore waters. Third ASEAN-Australia Symposium on Living Coastal Resources, Vol. 2, Chulalongkorn University, Bangkok, Thailand, pp 697-701Google Scholar
  67. Madin JS, Anderson KD, Andreasen MH, Bridge TC, Cairns SD, Connolly SR, Darling ES, Diaz M, Falster DS, Franklin EC, Gates RD, Hoogenboom MO, Huang D, Keith SA, Kosnik MA, Kuo CY, Lough JM, Lovelock CE, Luiz O, Martinelli J, Mizerek T, Pandolfi JM, Pochon X, Pratchett MS, Putnam HM, Roberts E, Stat M, Wallace CC, Widman E, Baird AH (2016a) The Coral Trait Database, a curated database of trait information for coral species from the global oceans. Sci Data 3:160012CrossRefGoogle Scholar
  68. Madin JS, Hoogenboom MO, Connolly SR, Darling ES, Falster DS, Huang D, Keith SA, Mizerek T, Pandolfi JM, Putnam HM, Baird AH (2016b) A trait-based approach to advance coral reef science. Trends Ecol Evol 31:419–428PubMedCrossRefGoogle Scholar
  69. Mason NW, Bello F, Mouillot D, Pavoine S, Dray S (2013) A guide for using functional diversity indices to reveal changes in assembly processes along ecological gradients. J Veg Sci 24:794–806CrossRefGoogle Scholar
  70. May RM (1988) How many species are there on Earth? Science 241:1441–1449PubMedCrossRefGoogle Scholar
  71. Mazel F, Mooers AØ, Riva GVD, Pennell MW (2017) Conserving phylogenetic diversity can be a poor strategy for conserving functional diversity. Syst Biol 66:1019–1027PubMedCrossRefGoogle Scholar
  72. McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185PubMedCrossRefGoogle Scholar
  73. Moberg F, Folke C (1999) Ecological goods and services of coral reef ecosystems. Ecol Econ 29:215–233CrossRefGoogle Scholar
  74. Morton B, Blackmore G (2001) South China Sea. Mar Pollut Bull 42:1236–1263PubMedCrossRefGoogle Scholar
  75. Mouchet MA, Villéger S, Mason NWH, Mouillot D (2010) Functional diversity measures: an overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol 24:867–876CrossRefGoogle Scholar
  76. Mouillot D, Dumay O, Tomasini JA (2007a) Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuar Coast Shelf Sci 71:443–456CrossRefGoogle Scholar
  77. Mouillot D, Mason NWH, Wilson JB (2007b) Is the abundance of species determined by their functional traits? A new method with a test using plant communities. Oecologia 152:729–737PubMedCrossRefGoogle Scholar
  78. Mouillot D, Graham NAJ, Villéger S, Mason NWH, Bellwood DR (2013) A functional approach reveals community responses to disturbances. Trends Ecol Evol 28:167–177PubMedCrossRefGoogle Scholar
  79. Mouillot D, Villéger S, Parravicini V, Kulbicki M, Arias-González JE, Bender M, Chabanet P, Floeter SR, Friedlander A, Vigliola L, Bellwood DR (2014) Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. Proc Natl Acad Sci U S A 111:13757–13762PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ng CSL, Toh TC, Chou LM (2013) Current status of coral reef restoration in Singapore. Proceedings of the Asian Conference on Sustainability, Energy & the Environment 2013. International Academic Forum, Nagoya, pp 546-558Google Scholar
  81. Pavoine S, Bonsall M (2011) Measuring biodiversity to explain community assembly: a unified approach. Biol Rev 86:792–812PubMedCrossRefGoogle Scholar
  82. Pavoine S, Ollier S, Pontier D (2005) Measuring diversity from dissimilarities with Rao’s quadratic entropy: are any dissimilarities suitable? Theor Popul Biol 67:231–239PubMedCrossRefGoogle Scholar
  83. Pavoine S, Love MS, Bonsall MB (2009) Hierarchical partitioning of evolutionary and ecological patterns in the organization of phylogenetically-structured species assemblages: application to rockfish (genus: Sebastes) in the Southern California Bight. Ecol Lett 12:898–908PubMedCrossRefGoogle Scholar
  84. Pavoine S, Vela E, Gachet S, de Bélair G, Bonsall MB (2011) Linking patterns in phylogeny, traits, abiotic variables and space: a novel approach to linking environmental filtering and plant community assembly. J Ecol 99:165–175CrossRefGoogle Scholar
  85. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758PubMedCrossRefGoogle Scholar
  86. Plass-Johnson JG, Taylor MH, Husain AA, Teichberg MC, Ferse SC (2016) Non-random variability in functional composition of coral reef fish communities along an environmental gradient. PLoS ONE 11:e0154014PubMedPubMedCentralCrossRefGoogle Scholar
  87. Poff NL, Olden JD, Vieira NK, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society 25:730–755CrossRefGoogle Scholar
  88. Pollock LJ, Thuiller W, Jetz W (2017) Large conservation gains possible for global biodiversity facets. Nature 546:141–144PubMedCrossRefGoogle Scholar
  89. Possingham HP, Wilson KA, Andelman SJ, Vynne CH (2006) Protected areas: goals, limitations, and design. In: Groom MJ, Meefe GK, Carroll CR (eds) Principles of Conservation Biology. Sinauer Associates, Sunderland, pp 507–549Google Scholar
  90. Core Team R (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  91. Rao CR (1982) Diversity and dissimilarity coefficients: A unified approach. Theor Popul Biol 21:24–43CrossRefGoogle Scholar
  92. Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284PubMedCrossRefGoogle Scholar
  93. Roberts TE, Bridge TC, Caley MJ, Baird AH (2016) The point count transect method for estimates of biodiversity on coral reefs: improving the sampling of rare species. PLoS ONE 11:e0152335PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rosenfeld JS (2002) Functional redundancy in ecology and conservation. Oikos 98:156–162CrossRefGoogle Scholar
  95. Sommer B, Harrison PL, Beger M, Pandolfi JM (2014) Trait-mediated environmental filtering drives assembly at biogeographic transition zones. Ecology 95:1000–1009PubMedCrossRefGoogle Scholar
  96. Sommer B, Sampayo EM, Beger M, Harrison PL, Babcock RC, Pandolfi JM (2017) Local and regional controls of phylogenetic structure at the high-latitude range limits of corals. Proc R Soc Lond B Biol Sci 284:20170915CrossRefGoogle Scholar
  97. Stafford-Smith MG (1993) Sediment-rejection efficiency of 22 species of Australian scleractinian corals. Mar Biol 115:229–243CrossRefGoogle Scholar
  98. Stafford-Smith MG, Ormond RFG (1992) Sediment-rejection mechanisms of 42 species of Australian scleractinian corals. Aust J Mar Freshw Res 43:683–705CrossRefGoogle Scholar
  99. Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooers AØ, Pavoine S, Purschke O, Redding DW, Rosauer DF, Winter M, Mazel F (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715PubMedCrossRefGoogle Scholar
  100. Ulrich W, Gotelli NJ (2010) Null model analysis of species associations using abundance data. Ecology 91:3384–3397PubMedCrossRefGoogle Scholar
  101. Veach V, Di Minin E, Pouzols FM, Moilanen A (2017) Species richness as criterion for global conservation area placement leads to large losses in coverage of biodiversity. Divers Distrib 23:715–726CrossRefGoogle Scholar
  102. Vellend M, Cornwell WK, Magnuson-Ford K, Mooers AØ (2011) Measuring phylogenetic biodiversity. Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, UK, 194-207Google Scholar
  103. Venail P, Gross K, Oakley TH, Narwani A, Allan E, Flombaum P, Isbell F, Joshi J, Reich PB, Tilman D, van Ruijven J, Cardinale BJ (2015) Species richness, but not phylogenetic diversity, influences community biomass production and temporal stability in a re-examination of 16 grassland biodiversity studies. Funct Ecol 29:615–626CrossRefGoogle Scholar
  104. Veron JEN (2000) Corals of the World, vol. 1–3. Australian Institute of Marine Science, Townsville, 295Google Scholar
  105. Veron JEN, DeVantier LM, Turak E, Green AL, Kininmonth S, Stafford-Smith MG, Peterson N (2009) Delineating the Coral Triangle. Galaxea 11:91–100CrossRefGoogle Scholar
  106. Veron J, Stafford-Smith M, DeVantier L, Turak E (2015) Overview of distribution patterns of zooxanthellate Scleractinia. Front Mar Sci 1:81CrossRefGoogle Scholar
  107. Villéger S, Mason NW, Mouillot D (2008) New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89:2290–2301PubMedCrossRefGoogle Scholar
  108. Villéger S, Miranda JR, Hernández DF, Mouillot D (2010) Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecol Appl 20:1512–1522PubMedCrossRefGoogle Scholar
  109. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505CrossRefGoogle Scholar
  110. Wilson EO (1988) The current state of biological diversity. In: Wilson EO (ed) Biodiversity. National Academies Press, pp 3–18Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biological SciencesNational University of SingaporeSingaporeSingapore
  2. 2.Tropical Marine Science InstituteNational University of SingaporeSingaporeSingapore
  3. 3.National Biodiversity CentreNational Parks BoardSingaporeSingapore
  4. 4.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada
  5. 5.Marine ProgramWildlife Conservation SocietyBronxUSA

Personalised recommendations